達(dá)標(biāo)測試人教版8年級(jí)數(shù)學(xué)上冊《軸對稱》綜合測試練習(xí)題(詳解)_第1頁
達(dá)標(biāo)測試人教版8年級(jí)數(shù)學(xué)上冊《軸對稱》綜合測試練習(xí)題(詳解)_第2頁
達(dá)標(biāo)測試人教版8年級(jí)數(shù)學(xué)上冊《軸對稱》綜合測試練習(xí)題(詳解)_第3頁
達(dá)標(biāo)測試人教版8年級(jí)數(shù)學(xué)上冊《軸對稱》綜合測試練習(xí)題(詳解)_第4頁
達(dá)標(biāo)測試人教版8年級(jí)數(shù)學(xué)上冊《軸對稱》綜合測試練習(xí)題(詳解)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)上冊《軸對稱》綜合測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在中,,為邊上的中線,,則的度數(shù)為(

).A.55° B.65° C.75° D.45°2、下列三角形中,等腰三角形的個(gè)數(shù)是(

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)3、下列圖案是幾家銀行的標(biāo)志,其中是軸對稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4、如圖是以正方形的邊長為直徑,在正方形內(nèi)畫半圓得到的圖形,則此圖形的對稱軸有()A.2條 B.4條 C.6條 D.8條5、如圖,在中,,的周長10,和的平分線交于點(diǎn),過點(diǎn)作分別交、于、,則的長為(

)A.10 B.6 C.4 D.不確定6、如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點(diǎn)B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個(gè)單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點(diǎn)B的對應(yīng)點(diǎn)B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)7、如圖是一個(gè)正方體,小敏同學(xué)經(jīng)過研究得到如下5個(gè)結(jié)論,正確的結(jié)論有(

)個(gè)①用剪刀沿著它的棱剪開這個(gè)紙盒,至少要剪7刀,才能展開成平面圖形;②用一平面去截這個(gè)正方體得到的截面是三角形ABC,則∠ABC=45°;③一只螞蟻在一個(gè)實(shí)心正方體木塊P點(diǎn)處想沿著表面爬到C點(diǎn)最近的路只有4條;④用一平面去截這個(gè)正方體得到的截面可能是八邊形;⑤正方體平面展開圖有11種不同的圖形.A.1 B.2 C.3 D.48、如圖,△ABC中,AB=AC,DE是AB的垂直平分線交AB于點(diǎn)E,交AC于點(diǎn)D,連接BD;若BD⊥AC,則∠CBD的度數(shù)是(

)A.22° B.22.5° C.24° D.24.5°9、如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則△ACD的周長為()A.10cm B.12cm C.15cm D.20cm10、如圖已知,把一張長方形紙片ABCD沿EF折疊后D與BC的交點(diǎn)為G,D、C分別在M、N的位置上,有下列結(jié)論:①EF平分∠MED;②∠2=2∠3;③:④∠1+2∠3=180°,其中一定正確的個(gè)數(shù)是(

)A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,為內(nèi)部一條射線,點(diǎn)為射線上一點(diǎn),,點(diǎn)分別為邊上動(dòng)點(diǎn),則周長的最小值為______.2、如圖,平面直角坐標(biāo)系中有四個(gè)點(diǎn),它們的橫縱坐標(biāo)均為整數(shù).若在此平面直角坐標(biāo)系內(nèi)移動(dòng)點(diǎn)A,使得這四個(gè)點(diǎn)構(gòu)成的四邊形是軸對稱圖形,并且點(diǎn)A的橫坐標(biāo)仍是整數(shù),則移動(dòng)后點(diǎn)A的坐標(biāo)為________.3、如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.4、如圖,在中,,,AB的垂直平分線MN交AC于D點(diǎn),連接BD,則的度數(shù)是________.5、如圖,在中,,,以點(diǎn)為圓心,以小于的長為半徑作弧,分別交于點(diǎn),交于點(diǎn),再分別以點(diǎn),為圓心,大于的長為半徑作弧,兩弧交于點(diǎn),作射線交于點(diǎn),連接,則______.6、點(diǎn)A(5,﹣2)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為___.7、如圖,在中,,D、E是內(nèi)兩點(diǎn).AD平分,,若,則______cm.8、如圖將長方形折疊,折痕為,的對應(yīng)邊與交于點(diǎn),若,則的度數(shù)為_______.9、如圖,在中,,,垂直平分,垂足為Q,交于點(diǎn)P.按以下步驟作圖:①以點(diǎn)A為圓心,以適當(dāng)?shù)拈L為半徑作弧,分別交邊于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心,以大于的長為半徑作弧,兩弧相交于點(diǎn)F;⑤作射線.若與的夾角為,則________°.10、如圖,依據(jù)尺規(guī)作圖的痕跡,計(jì)算∠α=________°.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,求的周長2、如圖,在△ABC中,AB=AC,D是BC邊上的中點(diǎn),連結(jié)AD,BE平分∠ABC交AC于點(diǎn)E,過點(diǎn)E作EF∥BC交AB于點(diǎn)F.(1)若∠C=36°,求∠BAD的度數(shù).(2)求證:FB=FE.3、如圖,中,,點(diǎn)在邊上,.求證.4、(1)如圖1,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.求證:△ABD≌△CAE;(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論△ABD≌△CAE是否成立?如成立,請給出證明;若不成立,請說明理由.(3)拓展應(yīng)用:如圖3,D,E是D,A,E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D,A,E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,求證:△DEF是等邊三角形.5、如圖,在中,,過的中點(diǎn)作,,垂足分別為點(diǎn)、.(1)求證:;(2)若,求的度數(shù).-參考答案-一、單選題1、B【解析】【分析】首先根據(jù)三角形的三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)直角三角形的兩銳角互余得到答案即可.【詳解】∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=25°,∴∠BAD=65°,故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),了解等腰三角形底邊的高、底邊的中線及頂角的平分線互相重合是解答本題的關(guān)鍵.2、B【解析】【分析】根據(jù)題圖所給信息,根據(jù)邊或角分析即可【詳解】解:第一個(gè)圖形中有兩邊相等,故第一個(gè)三角形是等腰三角形,第二個(gè)圖形中的三個(gè)角分別為50°,35°,95°,故第二個(gè)三角形不是等腰三角形;第三個(gè)圖形中的三個(gè)角分別為100°,40°,40°,故第三個(gè)三角形是等腰三角形;第四個(gè)圖形中的三個(gè)角分別為90°,45°,45°,故第四個(gè)三角形是等腰三角形;故答案為:B.【考點(diǎn)】本題考查了等腰三角形的判定,掌握等腰三角形的判定是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)軸對稱圖形的概念“如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合的圖形”可直接進(jìn)行排除選項(xiàng).【詳解】解:都是軸對稱圖形,而不是軸對稱圖形,所以是軸對稱圖形的有3個(gè);故選C.【考點(diǎn)】本題主要考查軸對稱圖形的識(shí)別,熟練掌握軸對稱圖形的概念是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)軸對稱的性質(zhì)即可畫出對稱軸進(jìn)而可得此圖形的對稱軸的條數(shù).【詳解】解:如圖,因?yàn)橐哉叫蔚倪呴L為直徑,在正方形內(nèi)畫半圓得到的圖形,所以此圖形的對稱軸有4條.故選:B.【考點(diǎn)】本題考查了正方形的性質(zhì)、軸對稱的性質(zhì)、軸對稱圖形,解決本題的關(guān)鍵是掌握軸對稱的性質(zhì).5、B【解析】【分析】根據(jù)平行線、角平分線和等腰三角形的關(guān)系可證DO=DB和EO=EC,從而得出DE=DB+EC,然后根據(jù)的周長即可求出AB.【詳解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可證:EO=EC∴DE=DO+EO=DB+EC∵,的周長10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故選B.【考點(diǎn)】此題考查的是平行線的性質(zhì)、角平分線的定義和等腰三角形的判定,掌握平行線、角平分線和等腰三角形的關(guān)系是解決此題的關(guān)鍵.6、D【解析】【分析】首先利用平移的性質(zhì)得到△A1B1C1中點(diǎn)B的對應(yīng)點(diǎn)B1坐標(biāo),進(jìn)而利用關(guān)于x軸對稱點(diǎn)的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個(gè)單位長度得到△A1B1C1,此時(shí)點(diǎn)B(-5,2)的對應(yīng)點(diǎn)B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【考點(diǎn)】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.7、B【解析】【分析】根據(jù)正方體的每個(gè)面都是正方形判斷②;根據(jù)一平面去截n棱柱,截面最多是(n+2)邊形判斷④;根據(jù)正方體的展開圖判斷⑤①;根據(jù)正方體有六個(gè)面,從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個(gè)組合的兩個(gè)面展開均是相同的長方形,而P到C的最短路線是這個(gè)長方形的對角線,判斷③.【詳解】解:(1)AB、BC、AC均是相同正方形的對角線,故AB=BC=AC,△ABC是等邊三角形,∠ABC=60°,②錯(cuò)誤;(2)用一平面去截n棱柱,截面最多是(n+2)邊形,正方體是四棱柱,所以截面最多是六邊形,④錯(cuò)誤;(3)正方體的展開圖只有11種,⑤正確;(4)正方體的11種展開圖,六個(gè)小正方形均是一連一關(guān)系,即必須是5條邊相連,正方體有12條棱,所以要剪12-5=7條棱,才能把正方體展開成平面圖形,①正確;(5)正方體有六個(gè)面,P點(diǎn)屬于“前、左、下面”這三個(gè)面,所以從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個(gè)組合的兩個(gè)面展開均是相同的長方形,而P到C的最短路線是這個(gè)長方形的對角線,這些對角線均相等,故從P到C的最短路線有6條;③錯(cuò)誤.綜上所述,正確的選項(xiàng)是①⑤,故選B【考點(diǎn)】本題考查了正方體的有關(guān)知識(shí).初中數(shù)學(xué)中的典型題型“多結(jié)論題型”,判別時(shí)方法:①容易判別的先判別,無需按順序解答;②注意部分結(jié)論間存在有一定的關(guān)聯(lián)性.8、B【解析】【分析】先利用線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)求得∠A、∠ABD、∠ABC,最后利用三角形內(nèi)角和定理求解即可.【詳解】解:∵BD⊥AC,DE是AB的垂直平分線,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故選B.【考點(diǎn)】本題主要考查了線段垂直平分線、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識(shí)點(diǎn),明確題意、靈活應(yīng)用相關(guān)知識(shí)點(diǎn)成為解答本題的關(guān)鍵.9、C【解析】【分析】根據(jù)圖形翻折變換的性質(zhì)得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出結(jié)論.【詳解】∵△ADE由△BDE翻折而成,∴AD=BD.∵AC=5cm,BC=10cm,∴△ACD的周長=AC+CD+AD=AC+BC=15cm.故選C.【考點(diǎn)】本題考查了翻折變換,熟知圖形翻折不變性的性質(zhì)是解答此題的關(guān)鍵.10、C【解析】【分析】根據(jù)折疊的性質(zhì)即可判斷①;根據(jù)平行線的性質(zhì)和折疊的性質(zhì)可得∠MEF=∠3,再根據(jù)三角形外角的性質(zhì)即可判斷②;由AD∥BC可得∠1+∠2=180°,然后結(jié)合②的結(jié)論即可判斷④,進(jìn)一步即可判斷③,進(jìn)而可得答案.【詳解】解:由折疊的性質(zhì)可得∠DEF=∠MEF,即EF平分∠MED,故①正確;∵AD∥BC,∴∠DEF=∠3,∵∠DEF=∠MEF,∴∠3=∠MEF,∴∠2=∠3+∠MEF=2∠3,故②正確;∵AD∥BC,∴∠1+∠2=180°,即∠1+2∠3=180°,故④正確;∴∠1+∠3=90°,故③錯(cuò)誤.綜上,正確的結(jié)論是①②④,共3個(gè).故選:C.【考點(diǎn)】本題考查了平行線的性質(zhì)、折疊的性質(zhì)、角平分線的定義以及三角形的外角性質(zhì)等知識(shí),屬于??碱}型,熟練掌握基本知識(shí)是解題關(guān)鍵.二、填空題1、6【解析】【分析】作點(diǎn)P關(guān)于OA的對稱點(diǎn)P1,點(diǎn)P關(guān)于OB的對稱點(diǎn)P2,連結(jié)P1P2,與OA的交點(diǎn)即為點(diǎn)M,與OB的交點(diǎn)即為點(diǎn)N,則此時(shí)M、N符合題意,求出線段P1P2的長即可.【詳解】解:作點(diǎn)P關(guān)于OA的對稱點(diǎn)P1,點(diǎn)P關(guān)于OB的對稱點(diǎn)P2,連結(jié)P1P2與OA的交點(diǎn)即為點(diǎn)M,與OB的交點(diǎn)即為點(diǎn)N,△PMN的最小周長為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長,連結(jié)OP1、OP2,則OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等邊三角形,∴P1P2=OP1=6,即△PMN的周長的最小值是6.故答案是:6.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)和判定,軸對稱?最短路線問題的應(yīng)用,關(guān)鍵是確定M、N的位置.2、(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)【解析】【詳解】試題解析:如圖所示:(此時(shí)不是四邊形,舍去),故答案為3、45°【解析】【詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.4、15°【解析】【分析】根據(jù)等腰三角形兩底角相等,求出∠ABC的度數(shù),再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,可得AD=BD,根據(jù)等邊對等角的性質(zhì),可得∠ABD=∠A,然后求∠DBC的度數(shù)即可.【詳解】∵AB=AC,∠A=50°,∴∠ABC=(180°?∠A)=(180°?50°)=65°,∵M(jìn)N垂直平分線AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC?∠ABD=65°?50°=15°.故答案為:15°.【考點(diǎn)】考查等腰三角形的性質(zhì),線段垂直平分線的性質(zhì),掌握垂直平分線的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】利用基本作圖得到AG平分∠BAC,則可計(jì)算出∠BAG=∠CAG=∠B=30,所以AG=BG;根據(jù)直角形三角形30角所對直角邊是斜邊的一半,知AG=2CG,則BG=BC,然后根據(jù)三角形面積與(底)高的關(guān)系計(jì)算的值.【詳解】解:由作法得,AG平分∠BAC∴∠BAG=∠CAG=30∵∠B=90-∠BAC=30∴∠B=∠BAG∴AG=BG在RtACG中,AG=2CG∴BG=2CG∴BG=BC∴=故答案為:.【考點(diǎn)】本題考查了作圖-復(fù)雜作圖,角平分線的性質(zhì),等腰三角形的性質(zhì),含30角的直角三角形三邊的關(guān)系及三角形面積與底(高)的關(guān)系.解題的關(guān)鍵是熟悉基本幾何圖形的性質(zhì).6、(5,2)【解析】【分析】根據(jù)關(guān)于x軸對稱的點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)解答.【詳解】解:點(diǎn)A(5,-2)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)是(5,2).故答案為:(5,2).【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo),關(guān)于x軸、y軸對稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點(diǎn)的坐標(biāo)規(guī)律:(1)關(guān)于x軸對稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點(diǎn)對稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).7、10【解析】【分析】過點(diǎn)E作,垂足為F,延長AD到H,交BC于點(diǎn)H,過點(diǎn)D作,垂足為G,由直角三角形中所對的直角邊是斜邊的一半可知,,然后由等腰三角形三線合一可知,,然后再證明四邊形DGFH是矩形,從而得到,最后根據(jù)計(jì)算即可.【詳解】解;過點(diǎn)E作,垂足為F,延長AD到H,交BC于點(diǎn)H,過點(diǎn)D作,垂足為G.,,,,,,.又,,,AD平分,,且.,,,四邊形DGFH是矩形...故答案為:10.【考點(diǎn)】本題主要考查的是等腰三角形的性質(zhì),含直角三角形的性質(zhì)以及矩形的性質(zhì)和判定,根據(jù)題意構(gòu)造含的直角三角形是解題的關(guān)鍵.8、70°【解析】【分析】依據(jù)矩形的性質(zhì)以及折疊的性質(zhì),即可得到∠DFE=∠B'EF,設(shè)∠BEF=α,則∠DFE=∠B'EF=α,根據(jù)B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,進(jìn)而得到∠BEF的度數(shù).【詳解】解:∵四邊形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折疊可得,∠BEF=∠B'EF,設(shè)∠BEF=α,則∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案為:70°.【考點(diǎn)】本題考查折疊問題以及矩形的性質(zhì)的運(yùn)用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.9、55°.【解析】【分析】根據(jù)直角三角形兩銳角互余得∠BAC=70°,由角平分線的定義得∠2=35°,由線段垂直平分線可得△AQM是直角三角形,故可得∠1+∠2=90°,從而可得∠1=55°,最后根據(jù)對頂角相等求出.【詳解】如圖,∵△ABC是直角三角形,∠C=90°,,,,∵是的平分線,,是的垂直平分線,是直角三角形,,,∵∠α與∠1是對頂角,.故答案為:55°.【考點(diǎn)】此題考查了直角三角形兩銳角互余,角平分線的定義,線段垂直平分線的性質(zhì),對頂角相等等知識(shí),熟練掌握相關(guān)定義和性質(zhì)是解題的關(guān)鍵.10、56【解析】【分析】先根據(jù)矩形的性質(zhì)得出AD∥BC,故可得出∠DAC的度數(shù),由角平分線的定義求出∠EAF的度數(shù),再由EF是線段AC的垂直平分線得出∠AEF的度數(shù),根據(jù)三角形內(nèi)角和定理得出∠AFE的度數(shù),進(jìn)而可得出結(jié)論.【詳解】如圖,∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分線,∴∠EAF=∠DAC=34°.∵由作法可知,EF是線段AC的垂直平分線,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.故答案為:56.三、解答題1、7cm【解析】【分析】根據(jù)翻折變換的性質(zhì)可得DE=CD,BE=BC,然后求出AE,再根據(jù)三角形的周長列式求解即可.【詳解】解:∵BC沿BD折疊點(diǎn)C落在AB邊上的點(diǎn)E處,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.【考點(diǎn)】本題考查了翻折變換的性質(zhì),熟記翻折前后兩個(gè)圖形能夠完全重合得到相等的線段是解題的關(guān)鍵.2、(1)54°,(2)見解析【解析】【分析】(1)利用等腰三角形的三線合一的性質(zhì)證明∠ADB=90°,再利用等腰三角形的性質(zhì)求出∠ABC即可解決問題.(2)利用角平分線性質(zhì)和平行線性質(zhì)證明∠FBE=∠FEB即可.【詳解】解:(1)∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵D為BC的中點(diǎn),∴AD⊥BC,∴∠BAD=90°﹣∠ABC=90°﹣36°=54°.(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵EF∥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論