版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省華陰市中考數(shù)學(xué)題庫試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、對于拋物線,下列說法正確的是()A.拋物線開口向上B.當(dāng)時,y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點坐標(biāo)為(1,﹣2)2、如圖1,矩形中,點為的中點,點沿從點運動到點,設(shè),兩點間的距離為,,圖2是點運動時隨變化的關(guān)系圖象,則的長為(
)A. B. C. D.3、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.54、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點G(異于A,C),連接DG,將△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF,則BF的長為(
)A. B.2 C. D.25、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設(shè)點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、下列命題不正確的是(
)A.三角形的內(nèi)心到三角形三個頂點的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個圓一定有唯一一個外切三角形2、下列條件中,不能確定一個圓的是(
)A.圓心與半徑 B.直徑C.平面上的三個已知點 D.三角形的三個頂點3、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=14、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(
)A. B. C.3 D.55、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(
)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標(biāo)號分別為1,2,3,綠色球兩顆,標(biāo)號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標(biāo)號之和不小于4的概率為__.2、已知二次函數(shù),當(dāng)分別取時,函數(shù)值相等,則當(dāng)取時,函數(shù)值為______.3、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.4、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.5、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關(guān)系是__________.四、簡答題(2小題,每小題10分,共計20分)1、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當(dāng)其中一個動點到達端點時,另一個動點也隨之停止運動,設(shè)運動時間為t(s).(1)當(dāng)t為何值時,四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時,PQ與⊙O相切?五、解答題(4小題,每小題10分,共計40分)1、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴(yán)酷環(huán)境下,東線作戰(zhàn)部隊?wèi){著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀(jì)念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學(xué)生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.2、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機抽取一張(不放回),求兩人抽到動物園和森林公園的概率.3、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點重合成一點C(即構(gòu)成),設(shè).(1)的周長為_______;(2)若,求x的值.4、解下列方程:(1);(2)-參考答案-一、單選題1、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對各項進行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項不符合題意;B、拋物線對稱軸為,結(jié)合其開口方向向下,可知當(dāng)時,y隨x增大而減小,選項說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項不符合題意;D、拋物線頂點坐標(biāo)為(-1,-2),選項不符合題意.故選:B.【考點】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運用拋物線的開口方向、對稱軸、頂點坐標(biāo)以及二次函數(shù)圖象的增減性解題.2、C【解析】【分析】先利用圖2得出當(dāng)P點位于B點時和當(dāng)P點位于E點時的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點位于B點時,,即,當(dāng)P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學(xué)生對函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結(jié)合的思想方法.3、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、A【解析】【分析】過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,F(xiàn)H=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,∵△AGD繞點A逆時針旋轉(zhuǎn)60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,F(xiàn)H=AF=1由勾股定理得AH=在Rt△BFH中,F(xiàn)H=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點】本題考查了圖形的旋轉(zhuǎn),矩形的性質(zhì),含30度角的直角三角形的性質(zhì),勾股定理等知識,解決此題的關(guān)鍵在于作出正確的輔助線.5、A【分析】設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而求解此時的函數(shù)解析式,當(dāng)在上時,延長交于點過作于并求解此時的函數(shù)解析式,當(dāng)在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而當(dāng)在上時,延長交于點過作于同理:則為等邊三角形,當(dāng)在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個內(nèi)角平分線的交點,內(nèi)心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內(nèi)心是三個內(nèi)角平分線的交點,三角形的內(nèi)心一定在三角形的內(nèi)部,錯誤,該選項符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項不符合題意;D、經(jīng)過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.2、C【解析】【分析】根據(jù)不在同一條直線上的三個點確定一個圓,已知圓心和直徑所作的圓是唯一的進行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點,不能確定一個圓,符合題意;D、已知三角形的三個頂點,能確定一個圓,不符合題意;故選C.【考點】本題考查了確定圓的條件,解題的關(guān)鍵是分類討論.3、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.4、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計算即可;【詳解】,,∴或,當(dāng)2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準(zhǔn)確計算是解題的關(guān)鍵.5、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據(jù)已知條件知的度數(shù)是80°,根據(jù)點D為弦AC的中點得出,求出、的度數(shù)=40°,即可求出40°<的度數(shù)<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數(shù)是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數(shù)都是×80°=40°,∵>,∴40°<的度數(shù)<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關(guān)系,圓周角定理,等腰三角形的性質(zhì)等知識點,能求出的范圍是解此題的關(guān)鍵.三、填空題1、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結(jié)果,兩顆球的標(biāo)號之和不小于4的結(jié)果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結(jié)果,兩顆球的標(biāo)號之和不小于4的結(jié)果有10個,兩顆球的標(biāo)號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關(guān)鍵.2、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關(guān)系,從而可以得到2x1+2x2的值,進而可以求得當(dāng)x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當(dāng)x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.3、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質(zhì)可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設(shè),則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關(guān)鍵.4、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.5、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關(guān)系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關(guān)系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關(guān)鍵.四、簡答題1、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設(shè)出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標(biāo),則可設(shè)頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設(shè)出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設(shè)拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當(dāng)已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當(dāng)已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.2、(1)當(dāng)時,四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時,四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當(dāng)t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長定理.五、解答題1、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結(jié)果,其中兩人抽到同一景點的結(jié)果有4種,進而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結(jié)果,其中兩人抽到動物園和森林公園的結(jié)果有2種,進而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嗆奶的課件教學(xué)課件
- 遼寧省2025秋九年級英語全冊Unit10You'resupposedtoshakehands課時5SectionB(2a-2e)課件新版人教新目標(biāo)版
- 2025年塑料家具項目發(fā)展計劃
- 黃疸的飲食調(diào)整與護理
- VSD護理技巧分享
- 疝氣護理中的疼痛評估與處理
- 耳鳴的藥物治療與非藥物治療
- 護理人文素養(yǎng)與手術(shù)室護理
- 員工培訓(xùn)課件app
- 護理差錯防范:培訓(xùn)與教育策略
- GB/T 6075.3-2011機械振動在非旋轉(zhuǎn)部件上測量評價機器的振動第3部分:額定功率大于15 kW額定轉(zhuǎn)速在120 r/min至15 000 r/min之間的在現(xiàn)場測量的工業(yè)機器
- GB/T 38591-2020建筑抗震韌性評價標(biāo)準(zhǔn)
- GB/T 34107-2017軌道交通車輛制動系統(tǒng)用精密不銹鋼無縫鋼管
- GB/T 31402-2015塑料塑料表面抗菌性能試驗方法
- GB/T 20969.3-2007特殊環(huán)境條件高原機械第3部分:高原型工程機械選型、驗收規(guī)范
- 最新-脂肪性肝病課件
- 眼科OCT異常圖譜解讀
- DB11- 996-2013-城鄉(xiāng)規(guī)劃用地分類標(biāo)準(zhǔn)-(高清有效)
- 風(fēng)光互補系統(tǒng)實驗(圣威科技)王鑫
- 1-院前急救風(fēng)險管理
- 古典園林分析之郭莊講解課件
評論
0/150
提交評論