版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學上冊《概率初步》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在一個不透明的袋子里裝有紅球、黃球共20個,這些球除顏色外都相同,小明通過多次試驗發(fā)現(xiàn),摸出紅球的頻率穩(wěn)定在0.6左右,則袋子中紅球的個數(shù)最有可能是(
)A.5 B.8 C.12 D.152、下列命題是真命題的是(
)A.相等的兩個角是對頂角B.相等的圓周角所對的弧相等C.若,則D.在一個不透明的箱子里放有1個白球和2個紅球,它們除顏色外其余都相同,從箱子里任意摸出1個球,摸到白球的概率是3、如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果下面有三個推斷:①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.其中合理的是()A.① B.② C.①② D.①③4、從-3,0,1,2這四個數(shù)中任取一個數(shù)作為一元二次方程的系數(shù)的值,能使該方程有實數(shù)根的概率是(
)A. B. C. D.5、下列事件中是必然事件的是(
)A.拋擲一枚質(zhì)地均勻的硬幣,正面朝上B.隨意翻到一本書的某頁,這一頁的頁碼是偶數(shù)C.打開電視機,正在播放廣告D.任意畫一個三角形,其內(nèi)角和是180°6、在一個不透明的袋子里,裝有3個紅球、1個白球,它們除顏色外都相同,從袋中任意摸出一個球為紅球的概率是(
)A. B. C. D.7、下列事件是不可能發(fā)生的是(
)A.隨意擲一枚均勻的硬幣兩次,至少有一次反面朝上B.隨意擲兩個均勻的骰子,朝上面的點數(shù)之和為1C.今年冬天黑龍江會下雪D.一個轉(zhuǎn)盤被分成6個扇形,按紅、白、白、紅、紅、白排列,轉(zhuǎn)動轉(zhuǎn)盤,指針停在紅色區(qū)域8、下列事件:(1)打開電視機,正在播放新聞;(2)下個星期天會下雨;(3)拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是1;(4)一個有理數(shù)的平方一定是非負數(shù);(5)若,異號,則;屬于確定事件的有(
)個.A.1 B.2 C.3 D.49、如圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為,寬為的長方形,將不規(guī)則圖案圍起來,然后在適當位置隨機地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計實驗結(jié)果),他將若干次有效實驗的結(jié)果繪制成了②所示的折線統(tǒng)計圖,由此他估計不規(guī)則圖案的面積大約為(
)A. B. C. D.10、某軌道列車共有3節(jié)車廂,設(shè)乘客從任意一節(jié)車廂上車的機會均等,某天甲、乙兩位乘客同時乘同一列軌道列車,則甲和乙從同一節(jié)車廂上車的概率是(
)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、在一個不透明的口袋中裝有5個紅球和若干個白球,它們除顏色外其他完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%附近,則估計口袋中白球大約有_____個.2、布袋中有紅、黃、藍三個球,它們除顏色不同以外,其他都相同,從袋中隨機取出一個球后再放回袋中,這樣取出球的順序依次是“紅—黃—藍”的概率是__________.3、從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關(guān)數(shù)據(jù)如下:種子粒數(shù)100400800100020005000發(fā)芽種子粒數(shù)8529865279316044005發(fā)芽頻率0.8500.7450.8150.7930.8020.801根據(jù)以上數(shù)據(jù)可以估計,該玉米種子發(fā)芽的概率約為___(精確到0.1).4、大小、形狀完全相同的5張卡片,背面分別寫著“我”“的”“中”“國”“夢”這5個字,從中隨機抽取一張,則這張卡片背面恰好寫著“中”字的概率是______.5、一個不透明的袋中裝有除顏色外都相同的三種球,紅球、黃球、黑球的個數(shù)之比為5:3:1,從中任意摸出1個球是紅球的概率為______.6、在一個不透明的袋子中裝有6個紅球和若干個白球,這些球除顏色外都相同,將球攪勻后隨機摸出一個球,記下顏色后放回,不斷重復這一過程,共摸球100次,發(fā)現(xiàn)有20次摸到紅球,估計袋子中白球的個數(shù)約為_________.7、一個盒子里裝有除顏色外都相同的1個紅球,4個黃球.把下列事件的序號填入下表的對應欄目中.①從盒子中隨機摸出1個球,摸出的是黃球;②從盒子中隨機摸出1個球,摸出的是白球;③從盒子中隨機摸出2個球,至少有1個是黃球.事件必然事件不可能事件隨機事件序號_______________8、袋子中裝有除顏色外完全相同的n個黃色乒乓球和3個白色乒乓球,從中隨機抽取1個,若選中白色乒乓球的概率是,則n的值是_____.9、在一個不透明袋子中,裝有3個紅球和一些白球,這些球除顏色外無其他差別,從袋中隨機摸出一個球是紅球的概率為,則袋中白球的個數(shù)是________.10、公司以3元/的成本價購進柑橘,并希望出售這些柑橘能夠獲得12000元利潤,在出售柑橘(去掉損壞的柑橘)時,需要先進行“柑橘損壞率”統(tǒng)計,再大約確定每千克柑橘的售價,右面是銷售部通過隨機取樣,得到的“柑橘損壞率”統(tǒng)計表的一部分,由此可估計柑橘完好的概率為_______(精確到0.1);從而可大約確定每千克柑橘的實際售價為_______元時(精確到0.1),可獲得12000元利潤.柑橘總質(zhì)量損壞柑橘質(zhì)量柑橘損壞的頻率(精確到0.001)………25024.750.09930030.930.10335035.120.10045044.540.09950050.620.101三、解答題(5小題,每小題6分,共計30分)1、為了調(diào)查某地區(qū)九年級學生的身體素質(zhì)情況,隨機抽查了部分九年級學生進行體能測試,并依據(jù)其中仰臥起坐測試(次數(shù)/分鐘)的結(jié)果繪制統(tǒng)計圖表如下(不完整):組別次數(shù)段頻數(shù)頻率150.12120.243am4bn540.08(1)將統(tǒng)計表中的數(shù)據(jù)補充完整:____,____,_____,_____;(2)若該地區(qū)九年級有12000名學生,請估算該地區(qū)九年級每分鐘仰臥起坐次數(shù)多于45次的學生數(shù);(3)若測試結(jié)果大于60次(含60次)為優(yōu)秀,需要抽取其中兩名同學進行復核,已知優(yōu)秀的學生中含有2個女生,求恰好抽到同性別學生的概率.2、現(xiàn)有甲、乙兩個不透明的袋子,甲袋里裝有2個紅球,1個黃球;乙袋里裝有1個紅球,1個白球.這些球除顏色外其余完全相同.(1)從甲袋里隨機摸出一個球,則摸到紅球的概率為________.(2)從甲袋里隨機摸出一個球,再從乙袋里隨機摸出一個球,請用畫樹狀圖或列表的方法,求摸出的兩個球顏色相同的概率.3、“石頭、剪子、布”是一個廣為流傳的游戲,規(guī)則是:甲、乙兩人都做出“石頭”“剪子”“布”3種手勢中的1種,其中“石頭”贏“剪子”,“剪子”贏“布”,“布”贏“石頭”,手勢相同不分輸贏.假設(shè)甲、乙兩人每次都隨意并且同時做出3種手勢中的1種.(1)甲每次做出“石頭”手勢的概率為_________;(2)用畫樹狀圖或列表的方法,求乙不輸?shù)母怕剩?、北京將于2022年舉辦冬奧會和冬殘奧會,中國將成為一個舉辦過五次各類奧林匹克運動會的國家.小亮是個集郵愛好者,他收集了如圖所示的三張紀念郵票(除正面內(nèi)容不同外,其余均相同),現(xiàn)將三張郵票背面朝上,洗勻放好.(1)小亮從中隨機抽取一張郵票是“冬奧會會徽”的概率是______;(2)小亮從中隨機抽取一張郵票(不放回),再從余下的郵票中隨機抽取一張,請你用列表或畫樹狀圖的方法求抽到的兩張郵票恰好是“冬奧會會徽”和“冬奧會吉祥物冰墩墩”的概率.(這三張郵票依次分別用字母A,B,C表示)5、某組織就2022年春節(jié)聯(lián)歡晚會節(jié)目的喜愛程度,在萬達廣場進行了問卷調(diào)查,將問卷調(diào)查結(jié)果分為“非常喜歡”“比較喜歡”“感覺一般”“不太喜歡”四個等級,分別記作A,B,C,D,根據(jù)調(diào)查結(jié)果繪制出如圖的“扇形統(tǒng)計圖”和“條形統(tǒng)計圖”,請結(jié)合圖中所給信息解答下列問題:(1)這次被調(diào)查對象共有人,被調(diào)查者“不太喜歡”有人;(2)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(3)在“非常喜歡”調(diào)查結(jié)果里有5人為80后,分別為3男2女,在這5人中,該民間組織打算隨機抽取2人進行采訪,請你用列表法或列舉法求出所選2人均為男生的概率.-參考答案-一、單選題1、C【解析】【分析】設(shè)紅球的個數(shù)為x個,根據(jù)摸出紅球的頻率穩(wěn)定在0.6左右列出關(guān)于x的方程,求解即可解答.【詳解】解:設(shè)紅球的個數(shù)為x個,根據(jù)題意,得:,解得:x=12,即袋子中紅球的個數(shù)最有可能是12,故選:C.【考點】本題考查利用頻率估計概率、簡單的概率計算,熟知經(jīng)過多次實驗所得的頻率可以近似認為是事件發(fā)生的概率是解題關(guān)鍵.2、D【解析】【分析】分別根據(jù)對頂角的定義,圓周角定理,不等式的基本性質(zhì)及概率公式進行判斷即可得到答案.【詳解】有公共頂點且兩條邊互為反向延長線的兩個角是對頂角,故A選項錯誤,不符合題意;在同圓或等圓中,相等的圓周角所對的弧相等,故B選項錯誤,不符合題意;若,則,故C選項錯誤,不符合題意;在一個不透明的箱子里放有1個白球和2個紅球,它們除顏色外其余都相同,從箱子里任意摸出1個球,摸到白球的概率是,故D選項正確,符合題意;故選:D.【考點】本題考查了命題的真假,涉及對頂角的定義,圓周角定理,不等式的基本性質(zhì)及概率公式,熟練掌握知識點是解題的關(guān)鍵.3、B【解析】【分析】隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,據(jù)此進行判斷即可.【詳解】解:①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,“正面向上”的概率不一定是0.47,故錯誤;②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,故正確;③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率不一定是0.45,故錯誤.故選:B.【考點】本題考查了利用頻率估計概率,明確概率的定義是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)一元二次方程根的判別式的意義得到△=32+4a≥0且,解得a≥且,然后根據(jù)概率公式求解.【詳解】解:當△=32+4a≥0且時,一元二次方程有實數(shù)根,所以a≥且,從-3,0,1,2這4個數(shù)中任取一個數(shù),滿足條件的結(jié)果數(shù)有,所以所得的一元二次方程中有實數(shù)根的概率是.故選:.【考點】正確理解列舉法求概率的條件以及一元二次方程根的判定方法是解決問題的關(guān)鍵.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、D【解析】【分析】逐項分析即可作出判斷.【詳解】A、拋擲一枚質(zhì)地均勻的硬幣,正面朝上,這是隨機事件,故不符合題意;B、隨意翻到一本書的某頁,這一頁的頁碼是偶數(shù),這是隨機事件,故不符合題意;C、打開電視機,正在播放廣告,這是隨機事件,故不符合題意;D、任意畫一個三角形,其內(nèi)角和是180°,這是必然事件,故符合題意;故選:D【考點】本題考查了隨機事件與必然事件,理解它們的含義是關(guān)鍵.6、A【解析】【分析】根據(jù)概率公式計算,即可求解.【詳解】解:根據(jù)題意得:從袋中任意摸出一個球為紅球的概率是.故選:A【考點】本題考查了概率公式:熟練掌握隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù);P(必然事件)=1;P(不可能事件)=0是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)不可能事件的概念即可解答,在一定條件下必然不會發(fā)生的事件叫不可能事件.【詳解】A.隨意擲一枚均勻的硬幣兩次,至少有一次反面朝上,可能發(fā)生,故本選項錯誤;B.隨意擲兩個均勻的骰子,朝上面的點數(shù)之和為1,不可能發(fā)生,故本選項正確;C.今年冬天黑龍江會下雪,可能發(fā)生,故本選項錯誤;D.一個轉(zhuǎn)盤被分成6個扇形,按紅、白、白、紅、紅、白排列,轉(zhuǎn)動轉(zhuǎn)盤,指針停在紅色區(qū)域,可能發(fā)生,故本選項錯誤.故選B.【考點】本題考查不可能事件,在一定條件下必然不會發(fā)生的事件叫不可能事件.8、B【解析】【分析】根據(jù)事件發(fā)生的可能性大小逐一判斷相應事件的類型,即可得答案.【詳解】(1)打開電視機,正在播放新聞是隨機事件,(2)下個星期天會下雨是隨機事件,(3)拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是1是不可能事件,是確定事件,(4)一個有理數(shù)的平方一定是非負數(shù)是確定事件,(5)若a、b異號,則a+b<0是隨機事件.綜上所述:屬于確定事件的有(3)(4),共2個,故選:B.【考點】本題考查的是必然條件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.熟練掌握基礎(chǔ)知識是解題的關(guān)鍵.9、B【解析】【分析】本題分兩部分求解,首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大??;繼而根據(jù)折線圖用頻率估計概率,綜合以上列方程求解.【詳解】假設(shè)不規(guī)則圖案面積為x,由已知得:長方形面積為20,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當事件A實驗次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:,解得.故選:B.【考點】本題考查幾何概率以及用頻率估計概率,并在此基礎(chǔ)上進行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復雜的題目背景當中找到考點化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.10、C【解析】【分析】用樹狀圖表示所有等可能的結(jié)果,再求得甲和乙從同一節(jié)車廂上車的概率.【詳解】解:將3節(jié)車廂分別記為1號車廂,2號車廂,3號車廂,用樹狀圖表示所有等可能的結(jié)果,共有9種等可能的結(jié)果,其中,甲和乙從同一節(jié)車廂上車的有3可能,即甲和乙從同一節(jié)車廂上車的概率是,故選:C.【考點】本題考查概率,涉及畫樹狀圖求概率,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.二、填空題1、15【解析】【分析】摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數(shù)即可.【詳解】設(shè)白球個數(shù)為:x個,∵摸到紅色球的頻率穩(wěn)定在25%左右,∴口袋中得到紅色球的概率為25%,∴,解得:x=15,經(jīng)檢驗,符合題意,即白球的個數(shù)為15個,故答案為:15.【考點】此題主要考查了利用頻率估計概率,根據(jù)大量反復試驗下頻率穩(wěn)定值即概率得出是解題關(guān)鍵.2、【解析】【分析】列舉出所有情況,看球的順序依次是“紅黃藍”的情況數(shù)占所有情況數(shù)的多少即可.【詳解】解:畫出樹形圖:共有27種情況,球的順序依次是“紅黃藍”的情況數(shù)有1種,所以概率為.故答案為:.【考點】考查用列樹狀圖的方法解決概率問題;得到球的順序依次是“紅黃藍”的情況數(shù)是解決本題的關(guān)鍵;用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.3、0.8【解析】【分析】6批次種子粒數(shù)從100粒增加到5000粒時,種子發(fā)芽的頻率趨近于0.801,所以估計種子發(fā)芽的概率為0.801,再精確到0.1,即可得出答案.【詳解】根據(jù)題干知:當種子粒數(shù)5000粒時,種子發(fā)芽的頻率趨近于0.801,故可以估計種子發(fā)芽的概率為0.801,精確到0.1,即為0.8,故答案為:0.8.【考點】本題比較容易,考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.4、【解析】【分析】屬于求簡單事件的概率,所有的等可能結(jié)果,從中確定符合事件的結(jié)果,利用概率公式計算即可.【詳解】解:背面分別寫著“我”“的”“中”“國”“夢”這5個字,從中隨機抽取一張,共有5種情況,“中”只有一種情況,隨機抽取一張,背面恰好寫著“中”字的概率是.故答案為:.【考點】本題考查的是求簡單事件的概率,掌握求簡單事件的概率方法,從中隨機抽取一張確定出出現(xiàn)總的可能情況,找出符合條件的情況是解答此類問題的關(guān)鍵.5、【解析】【分析】用紅球所占的份數(shù)除以所有份數(shù)的和即可求得是紅球的概率.【詳解】解:∵紅球、黃球、黑球的個數(shù)之比為5:3:1,∴從布袋里任意摸出一個球是紅球的概率是,故答案為:.【考點】此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、24【解析】【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,設(shè)未知數(shù)列出方程求解.【詳解】解:∵共試驗100次,其中有20次摸到紅球,∴白球所占的比例為:,設(shè)袋子中共有白球x個,則,解得:x=24,經(jīng)檢驗:x=24是原方程的解,故答案為:24.【考點】本題考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.關(guān)鍵是根據(jù)白球的頻率得到相應的等量關(guān)系.7、
③
②
①【解析】【分析】直接利用必然事件:一定發(fā)生的事件;不可能事件:一定不會發(fā)生的事件;隨機事件:可能發(fā)生可能不發(fā)生的事件,來依次判斷即可.【詳解】解:根據(jù)盒子里裝有除顏色外都相同的1個紅球,4個黃球,①從盒子中隨機摸出1個球,摸出的是黃球,屬于隨機事件;②從盒子中隨機摸出1個球,摸出的是白球,屬于不可能事件;③從盒子中隨機摸出2個球,至少有1個是黃球,屬于必然事件;故答案是:③,②,①.【考點】本題考查了必然事件、不可能事件、隨機事件,解題的關(guān)鍵是掌握相應的概念進行判斷.8、6.【解析】【分析】根據(jù)隨機事件的概率等于所求情況數(shù)與總數(shù)之比列出方程,解方程即可求出n的值.【詳解】解:根據(jù)題意得:=,解得:n=6,經(jīng)檢驗,n=6是分式方程的解;故答案為:6.【考點】本題主要考查分式方程的應用和隨機事件的概率,掌握概率公式是解題的關(guān)鍵.9、6【解析】【分析】隨機摸出一個球是紅球的概率是,可以得到球的總個數(shù),進而得出白球的個數(shù).【詳解】解:記摸出一個球是紅球為事件白球有個故答案為:.【考點】本題考察了概率的定義.解題的關(guān)鍵與難點在于理解概率的定義,求出球的總數(shù).10、
0.9
【解析】【分析】利用頻率估計概率得到隨實驗次數(shù)的增多,柑橘損壞的頻率越來越穩(wěn)定在0.1左右,由此可估計柑橘完好率大約是0.9;設(shè)每千克柑橘的銷售價為x元,然后根據(jù)“售價-進價=利潤”列方程解答.【詳解】解:從表格可以看出,柑橘損壞的頻率在常數(shù)0.1左右擺動,并且隨統(tǒng)計量的增加這種規(guī)律逐漸明顯,所以柑橘的完好率應是1-0.1=0.9;設(shè)每千克柑橘的銷售價為x元,則應有10000×0.9x-3×10000=12000,解得x=.所以去掉損壞的柑橘后,水果公司為了獲得12000元利潤,完好柑橘每千克的售價應為元,故答案為:0.9,.【考點】本題考查了用頻率估計概率的知識,用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.得到售價與利潤的等量關(guān)系是解決問題的關(guān)鍵.三、解答題1、(1)17;13;0.32;0.26(2)4080人(3)【解析】【分析】(1)用的圓心角度數(shù)除以360度即可求出n,利用的頻數(shù)除以頻率得到總?cè)藬?shù),即可求出m、b、a;(2)用12000乘以樣本中多于45次的學生占比即可得到答案;(3)用列舉法求解即可;(1)解:由題意得:,總?cè)藬?shù)人∴,,∴;(2)解:由題意得:人,∴該地區(qū)九年級每分鐘仰臥起坐次數(shù)多于45次的學生數(shù)4080人;(3)解:∵優(yōu)秀的人數(shù)總共有4人,其中女生有兩人,則男生也有兩人,∴一共有(男,男),(男,女),(女,男),(女,女)四種等可能的結(jié)果數(shù),∴抽取兩個學生是同性別的概率.【考點】本題主要考查了頻數(shù)頻率分布表,扇形統(tǒng)計圖,用樣本估計總體,列舉法求概率,熟練掌握相關(guān)知識是解題的關(guān)鍵.2、(1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有4種等可能的結(jié)果,摸出的兩個球顏色相同的結(jié)果有2種,再由概率公式求解即可.(1)解:甲袋里裝有2個紅球,1個黃球,共有3個球,摸到紅球的概率為;故答案為:;(2)解:根據(jù)題意畫圖如下:共有6種等可能的結(jié)果,摸出的兩個球顏色相同的結(jié)果有2種,則摸出的兩個球顏色相同的概率為.【考點】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.3、(1)(2)見解析,【解析】【分析】(1)根據(jù)概率計算公式求解即可;(2)先畫樹狀圖得出所有的等可能性的結(jié)果數(shù),然后找到乙不輸?shù)慕Y(jié)果數(shù),最后利用概率計算公式求解即可.(1)解:∵甲每次做出的手勢只有“石頭”、“剪子”、“布”其中的一種,∴甲每次做出“石頭”手勢的概率為;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年寧波市升力同創(chuàng)科技咨詢服務有限公司招聘備考題庫及答案詳解一套
- 高中語文課堂數(shù)字化教學任務智能分配對學生文學素養(yǎng)的影響教學研究課題報告
- 浙商銀行金華分行2025年四季度社會招聘備考題庫及完整答案詳解一套
- 2025年長沙市長沙星沙街道盼盼幼兒園教師招聘備考題庫有答案詳解
- 小學道德與法治六年級下冊4.8 科技發(fā)展 造福人類 第二課時 課件內(nèi)嵌視頻
- 2025年獨山縣百泉鎮(zhèn)村(社區(qū))后備干部招募備考題庫及答案詳解一套
- 簡約文藝風白色家居產(chǎn)品手冊
- 2025年貴州翎航拓達科技有限公司招聘備考題庫及完整答案詳解一套
- AI訓練設(shè)備姿態(tài)傳感器集成訓練系統(tǒng)開發(fā)課題報告教學研究課題報告
- 初中數(shù)學教學中探究式學習的策略研究與應用教學研究課題報告
- 《市場營銷專業(yè)申報》課件
- 三年級數(shù)學上冊 (提高版)第8章《分數(shù)的初步認識》單元培優(yōu)拔高測評試題(教師版含解析)(人教版)
- 19計科機器學習學習通超星期末考試答案章節(jié)答案2024年
- 全國職業(yè)院校技能大賽賽項規(guī)程(高職)農(nóng)產(chǎn)品質(zhì)量安全檢測
- DB51∕T 3179-2024 杵針技術(shù)操作規(guī)范
- 專利共同申請合同模板(2024版)
- 國開機考答案21-人文英語1(閉卷)
- AQ∕T 7009-2013 機械制造企業(yè)安全生產(chǎn)標準化規(guī)范
- MOOC 近代物理實驗-西南大學 中國大學慕課答案
- 教科版三年級科學上冊課件《運動和位置》
- 河北省部分地區(qū)2023-2024學年度高二上學期期末考試英語試題(解析版)
評論
0/150
提交評論