2026屆云南省昆明市云南師范大附屬中學數(shù)學九年級第一學期期末達標檢測試題含解析_第1頁
2026屆云南省昆明市云南師范大附屬中學數(shù)學九年級第一學期期末達標檢測試題含解析_第2頁
2026屆云南省昆明市云南師范大附屬中學數(shù)學九年級第一學期期末達標檢測試題含解析_第3頁
2026屆云南省昆明市云南師范大附屬中學數(shù)學九年級第一學期期末達標檢測試題含解析_第4頁
2026屆云南省昆明市云南師范大附屬中學數(shù)學九年級第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆云南省昆明市云南師范大附屬中學數(shù)學九年級第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.拋物線y=ax2+bx+c圖像如圖所示,則一次函數(shù)y=-bx-4ac+b2與反比例函數(shù)在同一坐標系內(nèi)的圖像大致為()A. B. C. D.2.一元二次方程x2-2x+1=0的根的情況是()A.只有一個實數(shù)根 B.有兩個相等的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根3.若,且,則的值是()A.4 B.2 C.20 D.144.如圖,過⊙O上一點C作⊙O的切線,交⊙O直徑AB的延長線于點D.若∠D=40°,則∠A的度數(shù)為()A.20° B.25° C.30° D.40°5.如圖,⊙O外接于△ABC,AD為⊙O的直徑,∠ABC=30°,則∠CAD=()A.30° B.40° C.50° D.60°6.已知命題“關(guān)于的一元二次方程必有兩個實數(shù)根”,則能說明該命題是假命題的的一個值可以是()A.1 B.2 C.3 D.47.某班有40人,一次體能測試后,老師對測試成績進行了統(tǒng)計.由于小亮沒有參加本次集體測試因此計算其他39人的平均分為90分,方差s2=1.后來小亮進行了補測,成績?yōu)?0分,關(guān)于該班40人的測試成績,下列說法正確的是()A.平均分不變,方差變大 B.平均分不變,方差變小C.平均分和方差都不變 D.平均分和方差都改變8.下列事件是必然事件的是()A.打開電視機,正在播放動畫片 B.經(jīng)過有交通信號燈的路口,遇到紅燈C.過三點畫一個圓 D.任意畫一個三角形,其內(nèi)角和是9.已知⊙O的半徑為3cm,線段OA=5cm,則點A與⊙O的位置關(guān)系是()A.A點在⊙O外 B.A點在⊙O上 C.A點在⊙O內(nèi) D.不能確定10.如圖一段拋物線y=x2﹣3x(0≤x≤3),記為C1,它與x軸于點O和A1:將C1繞旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞旋轉(zhuǎn)180°得到C3,交x軸于A3,如此進行下去,若點P(2020,m)在某段拋物線上,則m的值為()A.0 B.﹣ C.2 D.﹣2二、填空題(每小題3分,共24分)11.如圖,內(nèi)接于,于點,,若的半徑,則的長為______.12.若點在反比例函數(shù)的圖象上,則的大小關(guān)系是_____________.13.長度等于6的弦所對的圓心角是90°,則該圓半徑為_____.14.點A(﹣1,1)關(guān)于原點對稱的點的坐標是_____.15.如圖所示,某建筑物有一拋物線形的大門,小明想知道這道門的高度,他先測出門的寬度,然后用一根長為的小竹竿豎直的接觸地面和門的內(nèi)壁,并測得,則門高為__________.16.如圖,扇形的圓心角是為,四邊形是邊長為的正方形,點分別在在弧上,那么圖中陰影部分的面積為__________.(結(jié)果保留)17.如圖,在平面直角坐標系xOy中,P是直線y=2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____.18.光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時,滿足的折射定律如圖①所示:折射率(代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設(shè)計了圖②所示的實驗;通過細管可以看見水底的物塊,但從細管穿過的直鐵絲,卻碰不上物塊,圖③是實驗的示意圖,點A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系xOy中,點A(3,3),點B(4,0),點C(0,﹣1).(1)以點C為中心,把△ABC逆時針旋轉(zhuǎn)90°,請在圖中畫出旋轉(zhuǎn)后的圖形△A′B′C,點B′的坐標為________;(2)在(1)的條件下,求出點A經(jīng)過的路徑的長(結(jié)果保留π).20.(6分)消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.(1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________.(2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.21.(6分)如圖,在平面直角坐標系中,矩形的頂點分別在軸和軸的正半軸上,頂點的坐標為(4,2),的垂直平分線分別交于點,過點的反比例函數(shù)的圖像交于點.(1)求反比例函數(shù)的表示式;(2)判斷與的位置關(guān)系,并說明理由;(3)連接,在反比例函數(shù)圖像上存在點,使,直接寫出點的坐標.22.(8分)如圖,已知AB是⊙O的直徑,點C在⊙O上,AD垂直于過點C的切線,垂足為D,且∠BAD=80°,求∠DAC的度數(shù).23.(8分)如圖1,已知點A(a,0),B(0,b),且a、b滿足+(a+b+3)2=0,平等四邊形ABCD的邊AD與y軸交于點E,且E為AD中點,雙曲線y=經(jīng)過C、D兩點.(1)a=,b=;(2)求D點的坐標;(3)點P在雙曲線y=上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點Q的坐標;(4)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當T在AF上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.24.(8分)已知:關(guān)于x的方程(1)求證:m取任何值時,方程總有實根.(2)若二次函數(shù)的圖像關(guān)于y軸對稱.a、求二次函數(shù)的解析式b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應的函數(shù)值均成立.(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應的函數(shù)值均成立,求二次函數(shù)的解析式.25.(10分)如圖所示,點A(,3)在雙曲線y=上,點B在雙曲線y=之上,且AB∥x軸,C,D在x軸上,若四邊形ABCD為矩形,求它的面積.26.(10分)如圖,是的直徑,弦于點,是上一點,,的延長線交于點.(1)求證:.(2)當平分,,,求弦的長.

參考答案一、選擇題(每小題3分,共30分)1、D【詳解】解:由二次函數(shù)y=ax2+bx+c的圖象開口向上可知,a>0,因為圖象與y軸的交點在y軸的負半軸,所以c<0,根據(jù)函數(shù)圖象的對稱軸x=﹣>0,可知b<0根據(jù)函數(shù)圖象的頂點在x軸下方,可知∴4ac-b2<0有圖象可知f(1)<0∴a+b+c<0∵a>0,b<0,c<0,ac<0,4ac-b2<0,a+b+c<0∴一次函數(shù)y=-bx-4ac+b2的圖象過一、二、三象限,故可排除B、C;∴反比例函數(shù)的圖象在二、四象限,可排除A選項.故選D考點:函數(shù)圖像性質(zhì)2、B【解析】△=b2-4ac=(-2)2-4×1×1=0,∴原方程有兩個相等的實數(shù)根.故選B.,本題考查根的判別式,一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.3、A【分析】根據(jù)比例的性質(zhì)得到,結(jié)合求得的值,代入求值即可.【詳解】解:由a:b=3:4知,所以.所以由得到:,解得.所以.所以.故選A.考查了比例的性質(zhì),內(nèi)項之積等于外項之積.若,則.4、B【分析】直接利用切線的性質(zhì)得出∠OCD=90°,進而得出∠DOC=50°,進而得出答案.【詳解】解:連接OC,∵DC是⊙O的切線,C為切點,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.

故選:B.此題主要考查了切線的性質(zhì),正確得出∠DOC=50°是解題關(guān)鍵.5、D【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根據(jù)AD為⊙O的直徑,推出∠DCA=90°,最后根據(jù)直角三角形的性質(zhì)即可推出∠CAD=90°-∠ADC,通過計算即可求出結(jié)果.【詳解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故選D.本題主要考查圓周角定理,直角三角形的性質(zhì),角的計算,關(guān)鍵在于通過相關(guān)的性質(zhì)定理推出∠ADC和∠DCA的度數(shù).6、A【分析】根據(jù)判別式的意義,當m=1時,△<0,從而可判斷原命題為是假命題.【詳解】,解:△=n2-4,當n=1時,△<0,方程沒有實數(shù)根,當n=2時,△=0,方程有兩個相等的實數(shù)根,當n=3時,△>0,方程有兩個不相等的實數(shù)根,當n=4時,△>0,方程有兩個不相等的實數(shù)根,故選:A本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.7、B【分析】根據(jù)平均數(shù)、方差的定義計算即可.【詳解】∵小亮的成績和其它39人的平均數(shù)相同,都是90分,∴40人的平均數(shù)是90分,∵39人的方差為1,小亮的成績是90分,40人的平均分是90分,∴40人的方差為[1×39+(90-90)2]÷40<1,∴方差變小,∴平均分不變,方差變小故選B.本題考查了平均數(shù)與方差,熟練掌握定義是解題關(guān)鍵.8、D【分析】必然事件是在一定條件下,必然會發(fā)生的事件.依據(jù)定義判斷即可.【詳解】A.打開電視機,可能正在播放新聞或其他節(jié)目,所以不是必然事件;B.經(jīng)過有交通信號燈的路口,遇到紅燈,也可能遇到綠燈,所以不是必然事件;C.過三點畫一個圓,如果這三點在一條直線上,就不能畫圓,所以不是必然事件;D.任意畫一個三角形,其內(nèi)角和是,是必然事件.故選:D本題考查的是必然事件,必然事件是一定發(fā)生的事件.9、A【詳解】解:∵5>3∴A點在⊙O外故選A.本題考查點與圓的位置關(guān)系.10、C【分析】先求出點A1的坐標,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出點A1的坐標,然后根據(jù)圖象上點的縱坐標循環(huán)規(guī)律即可求出m的值.【詳解】當y=0時,x1﹣3x=0,解得:x1=0,x1=3,∴點A1的坐標為(3,0).由旋轉(zhuǎn)的性質(zhì),可知:點A1的坐標為(6,0).∵1010÷6=336……4,∴當x=4時,y=m.由圖象可知:當x=1時的y值與當x=4時的y值互為相反數(shù),∴m=﹣(1×1﹣3×1)=1.故選:C.此題考查的是探索規(guī)律題和求拋物線上點的坐標,找出圖象上點的縱坐標循環(huán)規(guī)律是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】連接OC,先證出△ADB為等腰直角三角形,從而得出∠ABD=45°,然后根據(jù)同弧所對的圓周角是圓心角的一半即可求出∠AOC,然后根據(jù)勾股定理即可求出AC.【詳解】解:連接OC∵,,∴△ADB為等腰直角三角形∴∠ABD=45°∴∠AOC=2∠ABD=90°∵的半徑∴OC=OA=2在Rt△OAC中,AC=故答案為:.此題考查的是等腰直角三角形的判定及性質(zhì)、圓周角定理和勾股定理,掌握等腰直角三角形的判定及性質(zhì)、同弧所對的圓周角是圓心角的一半和利用勾股定理解直角三角形是解決此題的關(guān)鍵.12、y1>y3>y1【分析】由題意可把用k表示出來,然后根據(jù)不等式的性質(zhì)可以得到的大?。驹斀狻坑深}意得:,∵-1<<,k<0∴-k>>即y1>y3>y1.故答案為y1>y3>y1.本題考查反比例函數(shù)的知識,根據(jù)反比例函數(shù)圖象上點的橫坐標得到其縱坐標是解題關(guān)鍵.13、1【分析】結(jié)合等腰三角形的性質(zhì),根據(jù)勾股定理求解即可.【詳解】解:如圖AB=1,∠AOB=90°,且OA=OB,在中,根據(jù)勾股定理得,即∴,故答案為:1.本題考查了等腰三角形的性質(zhì)及勾股定理,在等腰直角三角形中靈活利用勾股定理求線段長度是解題的關(guān)鍵.14、(1,﹣1)【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出答案.【詳解】解:點A(﹣1,1)關(guān)于原點對稱的點的坐標是:(1,﹣1).故答案為:(1,﹣1).此題主要考查了關(guān)于原點對稱的點的坐標,正確記憶橫縱坐標的符號關(guān)系是解題關(guān)鍵.15、【分析】根據(jù)題意分別求出A,B,D三點的坐標,利用待定系數(shù)法求出拋物線的表達式,從而找到頂點,即可找到OE的高度.【詳解】根據(jù)題意有∴設(shè)拋物線的表達式為將A,B,D代入得解得∴當時,故答案為:.本題主要考查二次函數(shù)的最大值,掌握待定系數(shù)法是解題的關(guān)鍵.16、【分析】由正方形的性質(zhì)求出扇形的半徑,求得扇形的面積,再減去正方形OEDC的面積即可解答,【詳解】解:∵正方形OCDE的邊長為1,∴OD=∵扇形的圓心角是為∴扇形的面積為∴陰影部分的面積為-1故答案為-1.本題考查了扇形的面積計算,確定扇形的半徑并求扇形的面積是解答本題的關(guān)鍵.17、(,).【分析】連接PQ、OP,如圖,根據(jù)切線的性質(zhì)得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂線段最短,當OP最小時,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到結(jié)論.【詳解】連接PQ、OP,如圖,∵直線OQ切⊙P于點Q,∴PQ⊥OQ,在Rt△OPQ中,OQ==,當OP最小時,OQ最小,當OP⊥直線y=2時,OP有最小值2,∴OQ的最小值為=.設(shè)點Q的橫坐標為a,∴S△OPQ=×=×2×|a,∴a=,∴Q點的縱坐標==,∴Q點的坐標為(,),故答案為(,).本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了勾股定理.18、【分析】過D作GH⊥AB于點H,利用勾股定理求出BD和CD,再分別求出入射角∠PDG和折射角∠CDH的正弦值,根據(jù)公式可得到折射率.【詳解】如圖,過D作GH⊥AB于點H,在Rt△BDF中,BF=12cm,DF=16cm∴BD=cm∵四邊形BFDH為矩形,∴BH=DF=16cm,DH=BF=12cm又∵BC=7cm∴CH=BH-BC=9cm∴CD=cm∵入射角為∠PDG,sin∠PDG=sin∠BDH=折射角為∠CDH,sin∠CDH=∴折射率故答案為:.本題主要考查了勾股定理和求正弦值,解題的關(guān)鍵是找出圖中的入射角與折射角,并計算出正弦值.三、解答題(共66分)19、(1)圖見解析;B′的坐標為(﹣1,3);(2).【分析】(1)過點C作B′C⊥BC,根據(jù)網(wǎng)格特征使B′C=BC,作A′C⊥AC,使A′C=AC,連接A′B′,△A′B′C即為所求,根據(jù)B′位置得出B′坐標即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠ACA′=90°,利用勾股定理可求出AC的長,利用弧長公式求出的長即可.【詳解】(1)如圖所示,△A′B′C即為所求;B′的坐標為(﹣1,3).(2)∵A(3,3),C(0,﹣1).∴AC==5,∵∠ACA′=90°,∴點A經(jīng)過的路徑的長為:=.本題考查旋轉(zhuǎn)的性質(zhì)及弧長公式,正確得出旋轉(zhuǎn)后的對應邊和旋轉(zhuǎn)角是解題關(guān)鍵.20、(1);(2)小月獲獎的機會更大些,理由見解析【分析】(1)根據(jù)概率公式直接求解即可;(2)首先根據(jù)題意分別畫出樹狀圖,然后由樹狀圖即可求得所有等可能的結(jié)果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率,比較即可求得答案.【詳解】解:(1)有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,則小楊獲獎的概率;(2)設(shè)兩張笑臉牌分別為笑,笑,兩張哭臉牌分別為哭,哭,畫樹狀圖如下:小月:∵共有種等可能的結(jié)果,翻開的兩張紙牌中出現(xiàn)笑臉的有種情況,∴小月獲獎的概率是:;小楊:∵共有種等可能的結(jié)果,翻開的兩張紙牌中出現(xiàn)笑臉的有種情況,∴小楊獲獎的概率是:;∵,∴,∴小月獲獎的機會更大些.此題考查了列表法或樹狀圖法求概率,注意小楊屬于不放回實驗,小月屬于放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)反比例函數(shù)表達式為;(2),證明見解析;(3).【分析】(1)求出點橫坐標,也就是.由垂直平分,得到,,,在,,求出,從而求出.(2)方法一:通過邊長關(guān)系可證,為公共角,從而,,;方法二:求出直線與直線的解析式,系數(shù)相等,所以方法三:延長交軸于點,證明,四邊形是平行四邊形,.(3)求出,根據(jù),設(shè),代入點坐標,求得,與聯(lián)立,求出的坐標.【詳解】(1)連接,∵垂直平分,∴.∵,∴.設(shè),則,∵四邊形矩形,∴,.在中,.即.解得.∴點.將點的坐標代入中,得.∴所求反比例函數(shù)表達式為.(2).方法一:將代入得,,∴點.∵,,,,∴,,,.∴,.∴.∵,∴.∴.∴.方法二:將代入得,,∴點.由(1)知,,.設(shè)直線的函數(shù)表達式為,∵點在直線上,∴,∴.∴設(shè)直線的函數(shù)表達式為.設(shè)直線的函數(shù)表達式為,∵點在直線上,∴解得∴直線的函數(shù)表達式為.∵直線與直線的值為,∴直線與直線平行.∴.方法三:延長交軸于點,設(shè)直線的函數(shù)表達式為,∵點在直線上,∴解得∴直線的函數(shù)表達式為.將代入中,得.∴點.∴,.∴.∵四邊形矩形,∴.∴四邊形是平行四邊形.∴.(3).本題考查了反比例函數(shù)的求法,平行的性質(zhì)以及兩直線垂直的性質(zhì).22、40°【解析】連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)平行線的性質(zhì)、等腰三角形的性質(zhì)得到∠DAC=∠CAO,得到答案.【詳解】如圖:連接OC,∵CD是⊙O的切線,∴OC⊥CD,又∵AD⊥CD,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠CAO=∠BAD=40°,本題考查了切線的性質(zhì),掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.23、(1)﹣1,﹣2;(2)D(1,4);(3)Q1(0,6),Q2(0,﹣6),Q3(0,2);(4)不變,的定值為,證明見解析【分析】(1)先根據(jù)非負數(shù)的性質(zhì)求出a、b的值;(2)故可得出A、B兩點的坐標,設(shè)D(1,t),由DC∥AB,可知C(2,t﹣2),再根據(jù)反比例函數(shù)的性質(zhì)求出t的值即可;(3)由(2)知k=4可知反比例函數(shù)的解析式為y=,再由點P在雙曲線y=上,點Q在y軸上,設(shè)Q(0,y),P(x,),再分以AB為邊和以AB為對角線兩種情況求出x的值,故可得出P、Q的坐標;(4)連NH、NT、NF,易證NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT由此即可得出結(jié)論.【詳解】解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E為AD中點,∴xD=1,設(shè)D(1,t),又∵四邊形ABCD是平行四邊形,∴C(2,t﹣2).∴t=2t﹣4,∴t=4,∴D(1,4);(3)∵D(1,4)在雙曲線y=上,∴k=xy=1×4=4,∴反比例函數(shù)的解析式為y=,∵點P在雙曲線y=上,點Q在y軸上,∴設(shè)Q(0,y),P(x,),①當AB為邊時:如圖1所示:若ABPQ為平行四邊形,則=0,解得x=1,此時P1(1,4),Q1(0,6);如圖2所示:若ABQP為平行四邊形,則,解得x=﹣1,此時P2(﹣1,﹣4),Q2(0,﹣6);②如圖3所示:當AB為對角線時:AP=BQ,且AP∥BQ;∴,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);綜上所述,Q1(0,6);Q2(0,﹣6);Q3(0,2);(4)如圖4,連接NH、NT、NF,∵MN是線段HT的垂直平分線,∴NT=NH,∵四邊形AFBH是正方形,∴∠ABF=∠ABH,在△BFN與△BHN中,,∴△BFN≌△BHN(SAS),∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四邊形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四邊形ATNH內(nèi)角和為360°,所以∠TNH=360°﹣180°﹣90°=90°,∴MN=HT,∴=,即的定值為.此題考查算術(shù)平方根的非負性,平方的非負性,待定系數(shù)法求函數(shù)的解析式,正方形的性質(zhì),平行四邊形的性質(zhì),全等三角形的判定及性質(zhì).24、(1)證明見解析;(2)a、y1=x2-1;b、證明見解析;(3).【解析】(1)首先此題的方程并沒有明確是一次方程還是二次方程,所以要分類討論:①m=0,此時方程為一元一次方程,經(jīng)計算可知一定有實數(shù)根;②m≠0,此時方程為二元一次方程,可表示出方程的根的判別式,然后結(jié)合非負數(shù)的性質(zhì)進行證明.(2)①由于拋物線的圖象關(guān)于y軸對稱,那么拋物線的一次項系數(shù)必為0,可據(jù)此求出m的值,從而確定函數(shù)的解析式;②此題可用作差法求解,令y1-y2,然后綜合運用完全平方式和非負數(shù)的性質(zhì)進行證明.(3)根據(jù)②的結(jié)論,易知y1、y2的交點為(1,0),由于y1≥y3≥y2成立,即三個函數(shù)都交于(1,0),結(jié)合點(-5,0)的坐標,可用a表示出y3的函數(shù)解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y(tǒng)的表達式,由于y3≥y2,所以y≥0,可據(jù)此求出a的值,即可得到拋物線的解析式.【詳解】解:(1)分兩種情況:當m=0時,原方程可化為3x-3=0,即x=1;∴m=0時,原方程有實數(shù)根;當m≠0時,原方程為關(guān)于x的一元二次方程,∵△=[-3(m-1)]2-4m(2m-3)=m2-6m+9=(m-3)2≥0,∴方程有兩個實數(shù)根;綜上可知:m取任

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論