山西?。〞x城地區(qū))2026屆數(shù)學九年級第一學期期末考試試題含解析_第1頁
山西?。〞x城地區(qū))2026屆數(shù)學九年級第一學期期末考試試題含解析_第2頁
山西省(晉城地區(qū))2026屆數(shù)學九年級第一學期期末考試試題含解析_第3頁
山西?。〞x城地區(qū))2026屆數(shù)學九年級第一學期期末考試試題含解析_第4頁
山西省(晉城地區(qū))2026屆數(shù)學九年級第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西?。〞x城地區(qū))2026屆數(shù)學九年級第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.為解決群眾看病貴的問題,有關部門決定降低藥價,原價為30元的藥品經(jīng)過連續(xù)兩次降價,價格變?yōu)?4.3元,則平均每次降價的百分率為()A.10% B.15% C.20% D.25%2.下列事件中是必然發(fā)生的事件是()A.投擲一枚質地均勻的骰子,擲得的點數(shù)是奇數(shù);B.某種彩票中獎率是1%,則買這種彩票100張一定會中獎;C.擲一枚硬幣,正面朝上;D.任意畫一個三角形,其內角和是180°.3.如圖是成都市某周內日最高氣溫的折線統(tǒng)計圖,關于這7天的日最高氣溫的說法正確的是()A.極差是8℃ B.眾數(shù)是28℃ C.中位數(shù)是24℃ D.平均數(shù)是26℃4.校園內有一個由兩個全等的六邊形(邊長為)圍成的花壇,現(xiàn)將這個花壇在原有的基礎上擴建成如圖所示的一個菱形區(qū)域,并在新擴建的部分種上草坪,則擴建后菱形區(qū)域的周長為()A. B. C. D.5.如圖,一只箱子沿著斜面向上運動,箱高AB=1.3cm,當BC=2.6m時,點B離地面的距離BE=1m,則此時點A離地面的距離是()A.2.2m B.2m C.1.8m D.1.6m6.如圖,點是內一點,,,點、、、分別是、、、的中點,則四邊形的周長是()A.24 B.21 C.18 D.147.下面空心圓柱形物體的左視圖是()A. B. C. D.8.下列說法中正確的有()①位似圖形都相似;②兩個等腰三角形一定相似;③兩個相似多邊形的面積比是,則周長比為;④若一個矩形的四邊形分別比另一個矩形的四邊形長2,那么這兩個矩形一定相似.A.1個 B.2個 C.3個 D.4個9.一元二次方程x2﹣4x+5=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根10.如圖,下列四個三角形中,與相似的是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知和是方程的兩個實數(shù)根,則__________.12.如圖,已知⊙O的半徑為10,AB⊥CD,垂足為P,且AB=CD=16,則OP=_____.13.關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是__________.14.如圖,E是矩形ABCD的對角線的交點,點F在邊AE上,且DF=DC,若∠ADF=25°,則∠BEC=________.15.如圖,A,B是反比例函數(shù)y=在第一象限內的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是_____.16.現(xiàn)有6張正面分別標有數(shù)字的不透明卡片,這些卡片除數(shù)字不同外其余全部相同現(xiàn)將它們背面朝上,洗均勻后從中任取一張,將該卡片上的數(shù)字記為,則使得關于的一元二次方程有實數(shù)根的概率為____.17.在Rt△ABC中,∠ACB=90°,若tanA=3,AB=,則BC=___18.已知方程的兩實數(shù)根的平方和為,則k的值為____.三、解答題(共66分)19.(10分)如圖,在矩形中對角線、相交于點,延長到點,使得四邊形是一個平行四邊形,平行四邊形對角線交、分別為點和點.(1)證明:;(2)若,,則線段的長度.20.(6分)周末,小馬和小聰想用所學的數(shù)學知識測量圖書館前小河的寬,測量時,他們選擇河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.35m,BD=7m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB.21.(6分)計算:2|1﹣sin60°|+tan45°22.(8分)如圖,點F為正方形ABCD內一點,△BFC繞點B逆時針旋轉后與△BEA重合(1)求△BEF的形狀(2)若∠BFC=90°,說明AE∥BF23.(8分)如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹標頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.24.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點和.求一次函數(shù)和反比例函數(shù)的表達式;請直接寫出時,x的取值范圍;過點B作軸,于點D,點C是直線BE上一點,若,求點C的坐標.25.(10分)如圖,某小區(qū)規(guī)劃在一個長,寬的矩形場地上,修建兩橫兩豎四條同樣寬的道路,且橫、豎道路分別與矩形的長、寬平行,其余部分種草坪,若使每塊草坪的面積都為.應如何設計道路的寬度?26.(10分)如圖,四邊形ABCD內接于⊙O,AC為⊙O的直徑,D為的中點,過點D作DE∥AC,交BC的延長線于點E.(1)判斷DE與⊙O的位置關系,并說明理由;(2)若CE=,AB=6,求⊙O的半徑.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】設平均每次降價的百分率為x,根據(jù)該藥品的原價及經(jīng)過兩次降價后的價格,即可得出關于x的一元二次方程,解之取其較小值即可得出結論.【詳解】設平均每次降價的百分率為x,依題意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合題意,舍去).故選:A.本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.2、D【分析】直接利用隨機事件以及概率的意義分別分析得出答案.【詳解】解:A、投擲一枚質地均勻的骰子,擲得的點數(shù)是奇數(shù),是隨機事件,不合題意;B、某種彩票中獎率是1%,則買這種彩票100張有可能會中獎,不合題意;C、擲一枚硬幣,正面朝上,是隨機事件,不合題意;D、任意畫一個三角形,其內角和是180°,是必然事件,符合題意.故選D.本題主要考查了概率的意義以及隨機事件,解決本題的關鍵是要正確區(qū)分各事件的意義.3、B【解析】分析:根據(jù)折線統(tǒng)計圖中的數(shù)據(jù)可以判斷各個選項中的數(shù)據(jù)是否正確,從而可以解答本題.詳解:由圖可得,極差是:30-20=10℃,故選項A錯誤,眾數(shù)是28℃,故選項B正確,這組數(shù)按照從小到大排列是:20、22、24、26、28、28、30,故中位數(shù)是26℃,故選項C錯誤,平均數(shù)是:℃,故選項D錯誤,故選B.點睛:本題考查折線統(tǒng)計圖、極差、眾數(shù)、中位數(shù)、平均數(shù),解答本題的關鍵是明確題意,能夠判斷各個選項中結論是否正確.4、C【分析】根據(jù)題意和正六邊形的性質得出△BMG是等邊三角形,再根據(jù)正六邊形的邊長得出BG=GM=3.5m,同理可證出AF=EF=3.5m,再根據(jù)AB=BG+GF+AF,求出AB,從而得出擴建后菱形區(qū)域的周長.【詳解】解:如圖,∵花壇是由兩個相同的正六邊形圍成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等邊三角形,∴BG=GM=3.5(m),同理可證:AF=EF=3.5(m)∴AB=BG+GF+AF=3.5×3=10.5(m),∴擴建后菱形區(qū)域的周長為10.5×4=42(m),故選:C.此題考查了菱形的性質,用到的知識點是等邊三角形的判定與性質、菱形的性質和正六邊形的性質,關鍵是根據(jù)題意作出輔助線,找出等邊三角形.5、A【分析】先根據(jù)勾股定理求出CE,再利用相似三角形的判定與性質進而求出DF、AF的長即可得出AD的長.【詳解】解:由題意可得:AD∥EB,則∠CFD=∠AFB=∠CBE,△CDF∽△CEB,∵∠ABF=∠CEB=90°,∠AFB=∠CBE,∴△CBE∽△AFB,∴==,∵BC=2.6m,BE=1m,∴EC=2.4(m),即==,解得:FB=,AF=,∵△CDF∽△CEB,∴=,即解得:DF=,故AD=AF+DF=+=2.2(m),答:此時點A離地面的距離為2.2m.故選:A.本題考查了勾股定理、相似三角形的判定和性質,利用勾股定理,正確利用相似三角形的性質得出FD的長是解題的關鍵.6、B【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半,求出,然后代入數(shù)據(jù)進行計算即可得解.【詳解】∵E、F、G、H分別是AB、AC、CD、BD的中點,

∴,∴四邊形EFGH的周長,

又∵AD=11,BC=10,

∴四邊形EFGH的周長=11+10=1.

故選:B.本題考查了三角形的中位線定理,熟記三角形的中位線平行于第三邊并且等于第三邊的一半是解題的關鍵.7、A【解析】試題分析:找出從幾何體的左邊看所得到的視圖即可.解:從幾何體的左邊看可得,故選A.8、A【分析】根據(jù)位似變換的概念、相似多邊形的判定定理和性質定理判斷.【詳解】解:①位似圖形都相似,本選項說法正確;②兩個等腰三角形不一定相似,本選項說法錯誤;③兩個相似多邊形的面積比是2:3,則周長比為,本選項說法錯誤;④若一個矩形的四邊分別比另一個矩形的四邊長2,那么這兩個矩形對應邊的比不一定相等,兩個矩形不一定一定相似,本選項說法錯誤;∴正確的只有①;故選:A.本題考查的是位似變換、相似多邊形的判定和性質,掌握位似變換的概念、相似多邊形的判定定理和性質定理是解題的關鍵.9、A【解析】首先求出一元二次方程根的判別式,然后結合選項進行判斷即可.【詳解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程無實數(shù)根,故選A.本題主要考查了根的判別式的知識,解題關鍵是要掌握一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.10、C【分析】△ABC是等腰三角形,底角是75°,則頂角是30°,結合各選項是否符合相似的條件即可.【詳解】由題圖可知,,所以∠B=∠C=75°,所以.根據(jù)兩邊成比例且夾角相等的兩個三角形相似知,與相似的是項中的三角形故選:C.此題主要考查等腰三角形的性質,三角形內角和定理和相似三角形的判定的理解和掌握,此題難度不大,但綜合性較強.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)根與系數(shù)的關系可得出x1+x2=-3、x1x2=-1,將其代入x12+x22=(x1+x2)2-2x1x2中即可求出結論.【詳解】解:∵x1,x2是方程的兩個實數(shù)根,

∴x1+x2=-3,x1x2=-1,

∴x12+x22=(x1+x2)2-2x1x2=(-3)2-2×(-1)=1.

故答案為:1.本題考查了一元二次方程的根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.12、6【分析】根據(jù)題意作出合適的輔助線,然后根據(jù)垂徑定理、勾股定理即可求得OP的長,本題得以解決.【詳解】解:作OE⊥AB交AB與點E,作OF⊥CD交CD于點F,連接OB,如圖所示,則AE=BE,CF=DF,∠OFP=∠OEP=∠OEB=90°,又∵圓O的半徑為10,AB⊥CD,垂足為P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四邊形OEPF是矩形,OE==6,同理可得,OF=6,∴EP=6,∴OP=,故答案為:.本題考查垂徑定理、勾股定理,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.13、【分析】根據(jù)根的判別式即可求出答案;【詳解】解:由題意可知:解得:故答案為:本題考查一元二次方程根的判別式,解題的關鍵是熟練掌握一元二次方程根的判別式并應用.14、115°【解析】由∠ADF求出∠CDF,再由等腰三角形的性質得出∠DFC,從而求出∠BCE,最后用等腰三角形的性質即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE.∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°.∵DF=DC,∴∠DFC=∠DCA=(180°-∠CDF)÷2=(180°-65°)÷2=,∴∠BCE=∠BCD﹣∠DCA=90°﹣=.∵BE=CE,∴∠BEC=180°﹣2∠BCE=180°﹣65°=115°.故答案為115°.本題是矩形的性質,主要考查了矩形的性質,等腰三角形的性質和判定,解答本題的關鍵是求出∠DFC.是一道中考??嫉暮唵晤}.15、2【分析】先根據(jù)反比例函數(shù)圖象上點的坐標特征及A,B兩點的橫坐標,求出A(1,1),B(4,1).再過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出S△AOC=S△BOD=×4=1.根據(jù)S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面積公式求出S梯形ABDC=(BD+AC)?CD=(1+1)×1=2,從而得出S△AOB=2.【詳解】解:∵A,B是反比例函數(shù)y=在第一象限內的圖象上的兩點,且A,B兩點的橫坐標分別是1和4,

∴當x=1時,y=1,即A(1,1),

當x=4時,y=1,即B(4,1).

如圖,過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,則S△AOC=S△BOD=×4=1.

∵S四邊形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,

∴S△AOB=S梯形ABDC,

∵S梯形ABDC=(BD+AC)?CD=(1+1)×1=2,

∴S△AOB=2.

故答案是:2.主要考查了反比例函數(shù)y=中k的幾何意義,即圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.16、【分析】先由一元二次方程x2-2x+a-2=0有實數(shù)根,得出a的取值范圍,最后根據(jù)概率公式進行計算即可.【詳解】解:∵一元二次方程x2-2x+a-2=0有實數(shù)根,

∴4-4(a-2)≥0,

∴a≤1,

∴a=-1,0,1,2,1.∴使得關于x的一元二次方程x2-2x+a-2=0有實數(shù)根概率為:.考查概率的求法;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到使一元二次方程x2-2x+a-2=0有實數(shù)根情況數(shù)是解決本題的關鍵.17、1【分析】由tanA==1可設BC=1x,則AC=x,依據(jù)勾股定理列方程求解可得.【詳解】∵在Rt△ABC中,tanA==1,∴設BC=1x,則AC=x,由BC2+AC2=AB2可得9x2+x2=10,解得:x=1(負值舍去),則BC=1,故答案為:1.本題考查了解直角三角形的問題,掌握銳角三角函數(shù)的定義以及勾股定理是解題的關鍵.18、3【分析】根據(jù)一元二次方程根與系數(shù)的關系,得出和的值,然后將平方和變形為和的形式,代入便可求得k的值.【詳解】∵,設方程的兩個解為則,∵兩實根的平方和為,即=∴解得:k=3或k=-11∵當k=-11時,一元二次方程的△<0,不符,需要舍去故答案為:3本題考查根與系數(shù)的關系,注意在最后求解出2個值后,有一個值不符需要舍去.三、解答題(共66分)19、(1)證明見解析;(2).【分析】(1)首先利用矩形和平行四邊形平行的性質得出和,然后利用相似三角形對應邊成比例,即可得證;(2)利用平行四邊形對角線的性質以及勾股定理和相似三角形的性質進行等量轉換,即可得解.【詳解】(1)證明:∵是矩形,且,∴.∴.又∵是平行四邊形,且AC∥DE∴,∴.∴.∴.(2)∵四邊形為平行四邊形,,相交點,∴∴在直角三角形中,∴又∵,∴.∴∴.此題主要考查相似三角形的判定與性質以及勾股定理的運用,熟練掌握,即可解題.20、20米【分析】先利用CB⊥AD,ED⊥AD得到∠CBA=∠EDA=90,由此證明△ABC∽△ADE,得到,將數(shù)值代入即可求得AB.【詳解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90,∵∠CAB=∠EAD,∴△ABC∽△ADE,∴,∵AD=AB+BD,BD=7,BC=1,DE=1.35,∴,∴AB=20,即河寬為20米.此題考查相似三角形的實際應用,解決河寬問題.21、2+2【解析】先代入特殊角三角函數(shù)值,再根據(jù)實數(shù)的運算,可得答案.【詳解】解:2|1﹣sin60°|+tan=2(1﹣32)+=2﹣3=2﹣3=2+2.本題考查了特殊角三角函數(shù)值、實數(shù)的混合運算;熟記特殊角三角函數(shù)值是解題關鍵.22、(1)等腰直角三角形(2)見解析【分析】(1)利用正方形的性質得BA=BC,∠ABC=90°,然后根據(jù)旋轉的定義可判斷旋轉中心為點B,旋轉角為90°,根據(jù)旋轉的性質得∠EBF=∠ABC=90°,BE=BF,則可判斷△BEF為等腰直角三角形;(2)根據(jù)旋轉的性質得∠BEA=∠BFC=90°,從而根據(jù)平行線的判定方法可判斷AE∥BF.【詳解】(1)△BEF為等腰直角三角形,理由如下:∵四邊形ABCD為正方形,∴BA=BC,∠ABC=90°,∵△BFC逆時針旋轉后能與△BEA重合,∴旋轉中心為點B,∠CBA為旋轉角,即旋轉角為90°;∵△BFC逆時針旋轉后能與△BEA重合,∴∠EBF=∠ABC=90°,BE=BF,∴△BEF為等腰直角三角形;(2)∵△BFC逆時針旋轉后能與△BEA重合,∴∠BEA=∠BFC=90°,∴∠BEA+∠EBF=180°,∴AE∥BF.本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了正方形的性質.23、古塔的高度是.【分析】根據(jù)題意即可求出EG、GH和CG,再證出,列出比例式,即可求解.【詳解】解:∵小明、竹桿、古塔均與地面垂直,∴∵小明眼睛離地面,竹桿頂端離地面∴∵∴,∴即解得:∴答:古塔的高度是.此題考查的是相似三角形的應用,掌握相似三角形的判定和性質是解決此題的關鍵.24、反比例函數(shù)的解析式為,一次函數(shù)解析式為:;當或時,;當點C的坐標為或時,.【分析】(1)利用待定系數(shù)法求出k,求出點B的坐標,再利用待定系數(shù)法求出一次函數(shù)解析式;(2)利用數(shù)形結合思想,觀察直線在雙曲線上方的情況即可進行解答;(3)根據(jù)直角三角形的性質得到∠DAC=30°,根據(jù)正切的定義求出CD,分點C在點D的左側、點C在點D的右側兩種情況解答.【詳解】點在反比例函數(shù)的圖象上,,反比例函數(shù)的解析式為,點在反比例函數(shù)的圖象上,,則點B的坐標為,由題意得,,解得,,則一次函數(shù)解析式為:;由函數(shù)圖象可知,當或時,;,,,由題意得,,在中,,即,解得,,當點C在點D的左側時,點C的坐標為,當點C在點D的右側時,點C的坐標為,當點C的坐標為或時,.本題考查一次函數(shù)和反比例函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論