版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.泰勒公式有如下特殊形式:當(dāng)f(x(在x=0處的n(n∈N*(階導(dǎo)數(shù)都存在時(shí),f(x(=f(0(+f/(0(x+ xn+….注:f”(x(表示f(x(的2階導(dǎo)數(shù),即為f/(x(的導(dǎo)數(shù),f(n((x((n≥3(表示f(x(的n階導(dǎo)數(shù),該公式也稱麥克勞林公式.2.【極值點(diǎn)第二充分條件】已知函數(shù)f((1)若f”(x0(>0,則f(x)在x0處取得極小值;(2)若f”(x0(<0,則f(x)在x0處取得極大值.3.帕德近似是法國(guó)數(shù)學(xué)家亨利.帕德發(fā)明的用有理多項(xiàng)式近似特定函數(shù)的方法.給定兩個(gè)正整數(shù)m,n,函數(shù)f(x)在x=0處的[m,n]階帕德近似定義為:R,且滿足:f(0)=R(0),f/,f(m+n)(0)=R(m+n)(0).(注:f”(x)=[f/(x)[/,f川(x)=[f”(x)[/,f(4)(x)=[f川(x)[/,f(5)(x)=[f(4)(x)[/,…;f(n)(x)為f(n-1)(x)的導(dǎo)數(shù)).4.拉格朗日中值定理又稱拉氏定理:如果函數(shù)f(x(在[a,b[上連續(xù),且在(a,b(上可導(dǎo),則必有ξ∈(a,b(,使得f/(ξ((b-a(=f(b(-f(a(.知識(shí)卡片1:一般地,如果函數(shù)f(x(在區(qū)間[a,b[上連續(xù),用分點(diǎn)a=x0<x1<…<xi-1<xi<…<xn=b將區(qū)間[a,b[等分成n個(gè)小區(qū)間,在每個(gè)小區(qū)間[xi-1,xi[上任取一點(diǎn)ξi(i=1,2,…,n(,作和式if(ξ1(Δx f(x(在區(qū)間[a,b[上的定積分,記作bfdx即dxf(ξi(.這里,a與b分別叫做積分式.從幾何上看,如果在區(qū)間[a,b[上函數(shù)f(x(連續(xù)且恒有f(x(≥0,那么定積分bfdx表示由直線x=a,x=b(a≠b(,y=0和曲線y=f(x(所圍成的曲邊梯形的面積.知識(shí)卡片2:一般地;如果f(x(是區(qū)間[a,b[上的連續(xù)函數(shù),并且F/(x(=f(x(,那么dx=FF(b)-F(a).這個(gè)結(jié)論叫做微積分基本定理,又叫做牛頓-萊布尼茨公式. ,1(時(shí),有不等式(1+x(n≤1+nx成則稱f(x(為[a,b[上的凹函數(shù);若f,則稱f(x(為凸函數(shù).若f(x(是區(qū)間[a,b[恒成立(當(dāng)且僅當(dāng)x1=x2=…=xn時(shí)等號(hào)成立).(2)設(shè)f(x(=-2sinx,若區(qū)間[a,b[滿足:當(dāng)f(x(定義域?yàn)閇a,b[時(shí),值域也為[a,b[,則稱區(qū)間[a,b[為(1)由題意,得sinx>x-,所以>1->1-=1->,(2)對(duì)于函數(shù)f(x(=-2sinx,有-2≤f(x(≤2,-2≤a<b≤2,,b[,故f(x(最小值為-2,于是a=-2,所以-,?[a,b[,此時(shí)f(x(的定義域?yàn)閇-2,2[,值域?yàn)閇-2,2[,符合題意.當(dāng)a>-時(shí),f(x(在[a,b[上單調(diào)遞減,故sinb+sina>0,-(sina+sinb(<0,與a+b=-2(sina+sinb(矛盾;綜上所述,f(x(有唯一的“和諧區(qū)間”[-2,2[.①若函數(shù)f(x(可導(dǎo),我們通常把導(dǎo)函數(shù)f/(x(的導(dǎo)數(shù)叫做f(x(的二階導(dǎo)數(shù),記作f”(x(.類似的,函數(shù)f(x(的二階導(dǎo)數(shù)的導(dǎo)數(shù)叫做函數(shù)f(x(的三階導(dǎo)數(shù),記作f川(x(,函數(shù)f(x(的三階導(dǎo)數(shù)的導(dǎo)數(shù)叫做函數(shù)f(x(的四階導(dǎo)數(shù)……,一般地,函數(shù)f(x(的n-1階導(dǎo)數(shù)的導(dǎo)數(shù)叫做函數(shù)f(x(的n階導(dǎo)數(shù),記作f(n((x(=[fn-1(x([/,n≥4;③若函數(shù)f(x(在包含x0的某個(gè)開區(qū)間(a,b)上具有任意階的導(dǎo)數(shù),那么對(duì)于任意x∈(a,b(有g(shù)(x)=f(xx-xx-xx-x0(n+…,我們將g(x(稱為函數(shù)f(x(在點(diǎn)x=x0處的泰勒展開式.例如f1(x)=ex在點(diǎn)x=0處的(1)求出f(x)=cosx在點(diǎn)x=0處的泰勒展開式g(x(;(1)f(x)=cosx,f/(x)=-sinx,f''(x(=-cosx,…,所以f(0)=cos0=1,f/(0)=-sin0=0,f''(x(=-cos0=-1,…,由cosxx-0(2n+…(3)因?yàn)?(1-1+1-1+1-1(1-1-… 兩邊求導(dǎo)可得:-sinx所以sinxf(x(<xg(x(;>0.所以φ(x(在(-∞,0[上遞減,在[0,+∞(上遞增,從而ex-1-x=φ(x(≥φ(0(=0,即ex≥1+x.(2)設(shè)h(x(=xg(x(-f(x(=x則h/(x故對(duì)x>0有h/(x(=x.,所以h(x(在[0,+∞(上遞增.從而對(duì)x∈(0,+∞(有h(x(>h(0(=0,即xg(x(-f(x(>0,故f(x(<xg(x(.(3)據(jù)已知有F(x(=g(x(-a故F/(xax,F(xiàn)”(xa(我們約定F”(x(是F/(x(的導(dǎo)數(shù)).據(jù)e≠e-”(xa>1-a≥0.所以F/(x(在(-∞,0[和[0,+∞(上遞增,從而在(-∞,+∞(上遞增.故對(duì)x<0有F/(x(<0,對(duì)x>0有F/(x(>0.所以F(x(在(-∞,0[上遞減,在[0,+∞(上遞增,從而x=0是F(x(的極小值點(diǎn),滿足條件;xx從而e2-e-2>e0-e-0=0,xa-2(+1-a=0.這就說明F/(x(在ln上遞減,從而對(duì)0<x<2ln有F/(x(<F/(0(故F(x(在ln上遞減,從而x=0不可能是F(x(的極小值點(diǎn),不滿足條件.4.18世紀(jì)早期英國(guó)牛頓學(xué)派最優(yōu)秀代表人物之一的數(shù)學(xué)家泰勒(BrookTaylor克勞林公式)有如下特殊形式:當(dāng)f(x(在x=0處的n(n∈N*(階導(dǎo)數(shù)都存在時(shí),f(x(=f(0(+f/(0(.x xn+….其中,f″(x(表示f(x(的二階導(dǎo)數(shù),即為f/(x(的導(dǎo)數(shù),f(n((x((n≥3(表示f(x(的n階導(dǎo)數(shù).(1)記f(x(=cosx,則f/(x(=-sinx,fⅡ(x(=-cosx,f(3((x(=sinx,f(4((x(=cosx,令g(x(=sinx-(x,則g/(x(=cosxx2,gⅡ(x(=-sinx+x,g川(x(=1-cosx,∵g川(x(≥0恒成立,∴gⅡ(x(在(0,+∞(遞增,∴gⅡ(x(>gⅡ(0(=0,∴g/(x(在(0,+∞(遞增,∴g/(x(>g/(0(=0,∴g(x(在(0,+∞(遞增,g(x(=sinx-(xg(0(=0,即sinx>x 令φ(x(=ln(x+1(-x,(x易得φ(x(在(-1,0(上遞增,在(0,+∞(上遞減,從而φ(x(≤φ(0(=0,即ln(x+1(≤x(當(dāng)且僅當(dāng)x=0時(shí)取等號(hào)),即n+k>0,到e其中e為自然對(duì)數(shù)的底數(shù),0<θ<1,n!=n×(n-1(×(x)(n+1)(此處ε介于0和x之間)稱作拉格朗日余項(xiàng).此時(shí)稱該式為函數(shù)f(x)在x=0處的n階泰勒公式,也稱作f(x)的n階麥克勞林公式.A.5B.6C.7D.8所以n的最小值為7.7.(2024·高二·陜西咸陽·階段練習(xí))給出定義:設(shè)f/(x(是函數(shù)y=f(x(的導(dǎo)函數(shù),f”(x(是函數(shù)f/(x(的導(dǎo)函數(shù),若方程f”(x(=0有實(shí)數(shù)解x=x0,則稱(x0,f(x0((為函數(shù)y=f(x(的“拐點(diǎn)”.經(jīng)研究發(fā)現(xiàn)所有的(1)若函數(shù)f(x(=x3+3x2-9x-1,求函數(shù)f(x(圖象的對(duì)稱中心;(2)已知函數(shù)g(x(=2mx3+[6ln(mx(-15[x2+,其中m>0.(ⅱ)若g(x1(+g(x2(=2(0<x1<x2(,求證:0<x1<<x2.(1)因?yàn)閒(x(=x3+3x2-9x-1,所以f/(x(=3x2+6x-9,所以f”(x(=6x+6.令f”(x(=0,解得x=-1,又f(-1(=-1+3+9-1=10,所以函數(shù)f(x(圖象的對(duì)稱中心為(-1,10(.(2)(i)因?yàn)間(x(=2mx3+[6ln(mx(-15[x2+x-+1,m>0,所以g/(x(=6mx2+6x+2[6ln(mx(-15[x+,”(x(=12mx+12ln(mx(-12=0,且mx-1+ln(mx(=0,令h(x(=x+lnx-1(x>0(,則h/(x(=1+>0在(0,+∞(上恒成立,所以h(x(=x+lnx-1在(0,+∞(上單調(diào)遞增,又h(1(=0,由零點(diǎn)存在性定理知,h(x(=x+lnx-1有唯一的零點(diǎn)所以g(x(的拐點(diǎn)為,1(. x(=12mx+12ln(mx(-12在(0,+∞(上單調(diào)遞增,gⅡ=0,x(>0,/(x(≥0在(0,+∞(上恒成立,∴g(x(在(0,+∞(上單調(diào)遞增,(x1(+g(x2(=2(0<x1<x2(,所以0<x1<<x2.8.(2024·高二·廣東東莞·階段練習(xí))記fⅡ(x(=(f/(x((/,f/(x(為f(x(的導(dǎo)函數(shù).若對(duì)?x∈D,fⅡ(x(>0,則稱函數(shù)y=f(x(為D上的“凸函數(shù)”.已知函數(shù)f(x(=exx3-ax2-1,a∈R.(2)若函數(shù)y=f(x(在(1,+∞(上有極值,求a的取值范圍.(1)由f(x(=ex-x3-ax2-1,得f/(x(=ex-x2-2ax,fⅡ(x(=ex-2x-2a,由于函數(shù)f(x(為R上的凸函數(shù),故fⅡ(x(=ex-2x-2a>0,即2a<ex-2x,令g(x)=ex-2x,則g/(x)>0;故g(x)=ex-2x在(-∞,ln2)上單調(diào)遞減,在(ln2,+∞)上單調(diào)遞增,故g(x)min=g(ln2)=2-2ln2,故2a<2-2ln2,∴a<1-ln2,故a的取值范圍為(-∞,1-ln2);(2)由f(x(=ex-x3-ax2-1,得f/(x(=ex-x2-2ax,函數(shù)y=f(x(在(1,+∞(上有極值,即f/(x(=ex-x2-2ax在(1,+∞(上有變號(hào)零點(diǎn),即=2a在(1,+∞(上有解,令hx∈(1,+∞(,∴h/(x令m(x)=(x-1(ex-x2,則m/(x)=x(ex-2(>0,x∈(1,+∞(,即m(x)=(x-1(ex-x2在(1,+∞(上單調(diào)遞增,且1<x<x0時(shí),m(x)<0,x>x0時(shí),m(x)>0,故h(x)在(1,x0(上單調(diào)遞減,在(x0,+∞(上單調(diào)遞增,故hmin=h由于m=(x0-1(ex0-xex故h(x)>0,∴2a>0,a>0,即a的取值范圍為(0,+∞).9.(2024·上海普陀·一模)若函數(shù)y=f(x((x∈D(同時(shí)滿足下列兩個(gè)條件,則稱y=f(x(在D上具有性質(zhì)M.①y=f(x(在D上的導(dǎo)數(shù)f/(x(存在;②y=f/(x(在D上的導(dǎo)數(shù)fⅡ(x(存在,且fⅡ(x(>0(其中fⅡ(x(=[f/(x([/)恒成立.(1)判斷函數(shù)y=lg在區(qū)間(0,+∞(上是否具有性質(zhì)M?并說明理由.(1)令y=f(x(=lg,x∈(0,+∞(,則f/(xx∈(0,+∞(,fx(=>0恒成立,:函數(shù)y=lg在區(qū)間(0,+∞(上具有性質(zhì)M;“g(x(在x=1處取得極值,且g(x(為奇函數(shù),:g(x(在x=-1處也取得極值,(g/(-1(=6-2a-b=0(b=6,:{g(g/(-1(=6-2a-b=0(b=6,:g(x(=2x3+,g/(x(=6x2-=6x2-6x-2,故g(x(在(0,1(單調(diào)遞減,在(1,+∞(單調(diào)遞增,滿足g(x(在x=1處取得極值,:存在實(shí)數(shù)c∈(0,+∞(,使gⅡ(x(>0在區(qū)間[c,+∞(上恒成立,:存在實(shí)數(shù)c,使得y=g(x(在區(qū)間[c,+∞(上具有性質(zhì)M,c的取值范圍是(0,+∞(;(3)“x∈(0,+∞(,(x+1([1+ln(x+1([:1+ln(x+1(>(x+1([1+ln(x+1([令F(x(=x,則F/(x令G(x(=x-ln(x+1(-1, x(>0,G(x(在區(qū)間(0,+∞(上單調(diào)遞增,:存在x0∈(2,3(,使G(x0(=x0-ln(x0+1(-1=0,:當(dāng)x∈(0,x0(時(shí),G(x(<0,F(xiàn)/(x(<0,F(xiàn)(x(在區(qū)間(0,x0(上單調(diào)遞減,,F(xiàn)(x(在區(qū)間(x0,+∞(上單調(diào)遞增, (x0+1([1+ln(x0+1([:當(dāng)x∈(0,+∞(時(shí),F(xiàn)(x(的最小值為F(x0(=x0,由G(x0(=x0-ln(x0+1(-1= (x0+1([1+ln(x0+1([:F(x0(==x0+1,“x0,3(,:F(x0(∈(3,4(,又“kF(x(恒成立,:k<F(x0(,:k的最大值為3.數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x,且滿足:f(0(=R(0(,,f(m+n((0(=R(m+n((0(.(注:fⅡ(x(=[f/(x([/,f川=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x([/,…;f(n((x(為f(n-1((x(的導(dǎo)數(shù)).(1)求函數(shù)f(x(=ln(x+1(在x=0處的[1,1[階帕德近似函數(shù)R(x(;(2)在(1)的條件下,試比較f(x(與R(x(的大小;(3)在(1)的條件下,若h(xm(f(x(在(0,+∞(上存在極值,求m的取值范圍.(1)由f(x(=ln(x+1(得f/fⅡ則函數(shù)f(x(=ln(x+1(在x=0處的[1,1[階帕德近似函數(shù)R(x)=,故R(x)===-所以R(2)令F(x)=f(x)-R(x),(x>-1),則F,(x)=f,(x)-R,(x)=-=(x()-(21)=≥0恒成立,所以F(x)在(-1,+∞)上單調(diào)遞增,且F(0)=0,所以當(dāng)-1<x<0時(shí),F(xiàn)(x)<0,即f(x)<R(x),當(dāng)x>0時(shí),F(xiàn)(x)>0,即f(x)>R(x).=+m(ln(x+1),(x>0),h,(x)=-++m(×=,因?yàn)閔(x)=-m(f(x)在(0,+∞)上存在極值,所以h,(x)在(0,+∞)上存在變號(hào)零點(diǎn),令g(x)=mx2+x-(x+1)ln(x+1),x>0,g,(x)=2mx+1-1-ln(x+1)=2mx-ln(x+1),記m(x(=g,(x(=2mx-ln(x+1),則m,(x(=2m②當(dāng)m≥時(shí),由于m≥,所以2m(x+1(-1≥x+1-1=x>0,故m,(x)>0,故g,(x)在(0,+∞)上單,(x)>0,所以g,min=glnm+ln令H(x)=1-x+lnx,0<x<1,H,(x)=-1+>0,所以H(x)在(0,1)上單調(diào)遞增,H(x)<H(1(=0,所以g-1(=1-2m+ln(2m)<0,故(mx2-1(-(mx-1((x+1(=x(1-m(>0,進(jìn)而>mx-1,所以1+-ln(x+1)>mx-ln(x+1);令Glnln>mx-ln=m-ln 設(shè)k(x)=lnx-x+1,則當(dāng)x>1時(shí)kl(x)=-1<0,k(x(單調(diào)遞減,當(dāng)0<x<1時(shí),kl(x)>0,k(x(單調(diào)遞增,故當(dāng)k(x)≤k(1(=0,故lnx≤x-1,故lnx≤x,所以G(x)>m(x+1)-2、x+1-m=(x+1)-m+(x+1)-2、x+1,(x+1)-m=-m>0,所以m的取值范圍為(0,.?dāng)?shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x(=,且滿足:f(0(=R(0(,fl(0(=Rl(0(,fⅡ(0(=RⅡ(0(,...,f(m+n((0(=R(m+n((0(.(注:fⅡ(x(=[fl(x([l,f川(x(=[fⅡ(x([l,f(4((x(=[fⅡ(x([l,f(5((x(=[f(4((x([l,...,f(n((x(為f(n-1((x(的導(dǎo)數(shù))已知f(x(=ln(x+1(在x=0處的[1,1[階帕德近似為g(x(1)求實(shí)數(shù)m,n的值;(3)設(shè)a為實(shí)數(shù),討論方程f(x(-g(x(=0的(1)由f(x(=ln(x+1(,g(x(=,有f(0(=g(0(,(x令φ(x(=f(x(-g(x(=ln(x+1(-(x≥0(,則(x所以φ(x(在其定義域(-1,+∞(內(nèi)為增函數(shù),又φ(0(=f(0(-g(0(=0,:x≥0時(shí),φ(x(=f(x(-g(x(≥φ(0(=0,得證.(3)h(x(=f(x(-g(x(=ln(x+1(-的定義域是(-1,+∞(,l(x(≥0,所以h(x(在(-1,+∞(上單調(diào)遞增,且h(0(=0,所以h(x(在(-1,+∞(上存在1個(gè)零點(diǎn);②當(dāng)a>2時(shí),令t(x(=x2+(4-2a((x+1(=x2+(4-2a(x+(4-2a(,a-2(-√a2-2a〈0,x2=(a-2(+va2-2a〈0.x(-1,x1(x1(x1,x2(x2(x2,+∞(h/(x(+0-0+h(x(極大值h(x1(極小值h(x2(,所以h(x(在(x1,x2(上存在1個(gè)零點(diǎn),且h(x1(>h(0(=0,h(x2(<h(0(=0;當(dāng)x∈(-1,x1(時(shí),因?yàn)閔(e-a-1(=lne-a-1<e-a-1<0,而h(x(在(-1,x1(單調(diào)遞增,且h/(x1(=0,而h(e-a-1(<0,故-1<e-a-1<x1,所以h(x(在(-1,x1(上存在1個(gè)零點(diǎn);a-1>0,而h(x(在(x2,+∞(單調(diào)遞增,且h/(x2(=0,而h(ea-1(>0,所以ea-1>x2,所以h(x(在(x2,+∞(上存在1個(gè)零點(diǎn).從而h(x(在(-1,+∞(上存在3個(gè)零點(diǎn).當(dāng)a>2時(shí),方程f(x(-g(x(=12.給定兩個(gè)正整數(shù)m,n,函數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x且滿足:f(0(=R(0(,f/(0(=R/(0(,fⅡ(0(=RⅡ(0(…f(m+n((0(=R(m+n((0(.已知f(x(=ln(x+1(在x=0處的[1,1[階帕德近似R(x(=注:fⅡ(x(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x([/,…(1)因?yàn)閒(x(=ln(x+1(,R(x(=,f,-1=-2(b-ac(c,c=, (2)(x+c(f=(x+ln+1(,令+1=t,則(x+c(f=lnt,t∈(0,1(U(1,+∞(,令h(t(=lntt∈(0,1(U(1,+∞(,所以h(t(在(0,1(單調(diào)遞增,在(1,+∞(單調(diào)遞增, t∈(1,+∞(,h(t(>h(1(=0,lnt所以lnt>1,綜上,(x+c(f>1.x+時(shí),即ln(1+x+>1,(x+ln(1+>1,由(2)知上式成立,所以x∈(-∞,-1(U(0,+∞(,x<e等價(jià)于xln(1+<1,所以解集為(0,+∞(.數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x且滿足:f(0(=R(0(,f/(0(=R/(0(,fⅡ(0(=R/(0(…,f(m+n((0(=R(m+n((0((注:fⅡ(x(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x([/,…,fn(x(為f(n-1((x(的導(dǎo)數(shù))已知f(x(=ln(x+1(在x=0處的[1,1[階帕德近似為R(x(=.(2)求證:(x+b(f因?yàn)閒(x(=ln(x+1(,所以f/(x(=,fⅡ(x(=-(0(=fⅡ(0(ln1.1=f(0.1(≈R(0.1(==≈0.095所以φ(t(在(0,1(上單調(diào)遞增,在(1,+∞(上單調(diào)遞增t(<φ(1(=0,可得lntlnt>1成立,t(>φ(1(=0,x<e<(1+x+成立,所以使e<(1+x+成立的x的取值范圍為x>0或x<-1不妨令h(x(=lnx-x+1,函數(shù)定義域?yàn)?0,1(∪(1,+∞(.x(>0,h(x(單調(diào)遞增;/(x(<0,h(x(單調(diào)遞減,所以h(x(<h(1(=0,則當(dāng)x∈(-∞,-1(∪(0,+∞(時(shí),有l(wèi)n(1+<(所以使(1+x<e成立的x的取值范圍為(0,+∞綜上可得不等式(1+x<e<(1+x-的解集為(0,+∞(. (2)已知函數(shù)f(x(=ex-ax2-(e-a-1(x-1,a∈R在區(qū)間(0,1(內(nèi)有零點(diǎn),求a的取值范圍.(1)設(shè)F(x(=ax4+bx3+cx2-(a+b+c(x,x∈[0,1[,則F/(x(=4ax3+3bx2+2cx-(a+b+c(,所以函數(shù)F(x(在[0,1[上連續(xù),在區(qū)間(0,1(上可導(dǎo),又F(0(=0,F(1(=a+b+c-a-b-c=0,故F(0(=F(1(,(2)因?yàn)楹瘮?shù)f(x(=ex-ax2-(e-a-1(x-1,a∈R在區(qū)間(0,1(內(nèi)有零點(diǎn),,1(,由f(x(=ex-ax2-(e-a-1(x-1可得f/(x(=ex-2ax-(e-a-1(,所以函數(shù)f(x(在[0,x1[上連續(xù),在(0,x1(上可導(dǎo),又f(0(=e0-0-0-1=0,f(x1(=0,因?yàn)楹瘮?shù)f(x(在[x1,1[上連續(xù),在(x1,1(上可導(dǎo),又f(1(=e-a-e+a+1-1=0,f(x1(=0,所以方程ex-2ax-(e-a-1(=0在(0,1(上至少有兩個(gè)不等的實(shí)數(shù)根,設(shè)g(x(=ex-2ax-(e-a-1(,x∈(0,1(,則g/(x(=ex-2a,x(>0,函數(shù)g(x(在(0,1(上單調(diào)遞增,所以方程ex-2ax-(e-a-1(=0在(0,1(上至多有一個(gè)根,矛盾,x(<0,函數(shù)g(x(在(0,1(上單調(diào)遞減,所以方程ex-2ax-(e-a-1(=0在(0,1(上至多有一個(gè)根,矛盾,,函數(shù)g(x(在(0,ln2a(上單調(diào)遞減,,函數(shù)g(x(在(ln2a,1(上單調(diào)遞增,所以g(ln2a(<0,又g(0(=1-(e-a-1(=2+a-e,g(1(=e-2a-(e-a-1(=1-a,所以a的取值范圍(e-2,1(.15.(2024·高三·陜西安康·開學(xué)考試)定理:如果函(1)設(shè)f(x)=x(x-1)(x-2)(x-4),記f(x)的導(dǎo)數(shù)為f/(x),試用上述定理,說明方程f/(x)=0根的個(gè)a+b(1)函數(shù)f(x)=x(x-1)(x-2)(x-4)的定義域?yàn)镽,函數(shù)f(x)在R上的圖象連續(xù)不斷,求導(dǎo)得f/(x)=4x3-21x2+28x-8,顯然f(0)=f(1)=f(2)=f(4)=a+b在閉區(qū)間[0,1]上f(x)的圖象是連續(xù)不斷的,在開區(qū)間(0,1)內(nèi)每一點(diǎn)存在導(dǎo)數(shù),且f(0)=f(1),,使得f/所以方程f/(x)=0有3個(gè)根,分別在區(qū)間(0,1),(1,2),(2,4)內(nèi).(2)令函數(shù)h(x)=f(x)-x,依題意,h(x)在閉區(qū)間[a,b]上的圖象是連續(xù)不斷的曲線,求導(dǎo)得h/(x)=f/(x)-,則h(x)在開區(qū)間(a,b)內(nèi)每一點(diǎn)存在導(dǎo)數(shù),且h(a)=f(a)-b=h即f,整理得f(b)-f(a)=f/(c)(b-a),所以在開區(qū)間(a,b)內(nèi)至少存在一點(diǎn)c,使得f(b)-f(a)=f/(c)(b-a).<x2, f,把F(x)的二次項(xiàng)系數(shù)表示成關(guān)于f的函數(shù)G(f),并求G(f)的值(1)由題意G(f)=++=++=f-e+2又f>e,所以G(f)>e-e+2=-e+2.即G(f)的值域是(-e+2,+∞(;(a+b)[d(b-c)+e(c-a)+f(a-b)]=d(b-c)(a+b)+e(c-a)(a+b)+f(a2-b2)=d(b-c)([(b+c)+(a-c)]+e(c-a)[(c+a)+(b-c)]+f(a2-b2)=d(b2-c2)+e(c2-a2)+f(a2-b2)+d(b-c)(a-c)+e(c-a)(b-c)d(b-c)+e(c-a)+f(a-b)所以(a+b)[d(b-c)+e(c-a)+f(a-b)]>d(b2-c2)+e(c2-a2)+f(a2-b2),所以a+b<d(b2-c2(+e(c2d(b-c)+e(c-a)+f(a-b)(b+c)[d(b-c)+e(c-a)+f(a-b)]=d(b2-c2)+e(c-a)(b+c)+f(a-b)(b+c)=d(b2-c2)+e(c-a)(c-a+b-a)+f(a-b)(a+b+c-a)=d(b2-c2)+e(c2-a2)+f(a2-b2)+e(c-a)(b-a)+f(a-b)(c-a)d(b-c)+e(c-a)+f(a-b),所以(b+c)[d(b-c)+e(c-a)+f(a-b)]<d(b2-c2)+e(c2-a2)+f(a2-b2),所以b+c>d(b2-c2(+ed(b-c)+e(c-a)+f(a-b),17.(2024·江蘇鹽城·模擬預(yù)測(cè))根據(jù)多元微分求條件極值理論,要求二元函數(shù)z=f(x,y)在約束條件g(x,y)(Lx(x,y,λ)=fx(x,y)+λgx(x,y)=0Ly(x,y,λ)=fy(x,y)+λgy(x,y)=0,解此方程組,得出解(x,y),就是二元函數(shù)z=f(x,y)在約束條件g(x,(Lλ(x,y,λ)=g(x,y)=0y)的可能極值點(diǎn).x,y的值代入到f(x,y)中即為極值.(1)求函數(shù)f(x,y)=x2y2+2xy+xy2關(guān)于變量y的導(dǎo)數(shù)并求當(dāng)x=1處的導(dǎo)數(shù)值.(2)利用拉格朗日乘數(shù)法求:設(shè)實(shí)數(shù)x,y滿足g(x,y)=4x2+y2+xy-1=0,求f(x,y)=2x+y的最大z2≥.(1)函數(shù)f(x,y)=x2y2+2xy+xy2,對(duì)變量y求導(dǎo)得:fy(x,y)=2x2y+2x+2xy,(2)令L(x,y,λ)=2x+y+λ(4x2+y2+xy-1),(x=y=|或{|55Lλ(x,(x=y=|或{|55Lλ(x,y,λ)=4x2+y2+xy-1=0λ=1055(λ=-55于是函數(shù)f(x,y)在約束條件g(x,y)=0的可能極值點(diǎn)是(-,-,(,當(dāng)x=-,y=-時(shí),函數(shù)f(x,y)的一個(gè)極值為函數(shù)f(-,-=-,當(dāng)x=,y=時(shí),函數(shù)f(x,y)的一個(gè)極值為函數(shù)f,(=,4所以f(x,y)的最大值為210.2+-(λ1+λ2)2=+λ+λ+(λ1+λ21b(a-b)≥a2+1b(a-b)≥a2+ sh(x2(-x2-1[.[ch(x1(+sh(x1([>sin(x1+x2(-sinx1-x2cosx1.(1)平方關(guān)系:ch2(x(-sh2(x(=1;倍角公式:sh(2x(=2sh(x(ch((sh(x)(,=ch(x)(sh(x)(,=ch(x)x(-sh2(x(=22=-=1;倍角公式:sh(2x(===2sh(x(c導(dǎo)數(shù):(sh(x)(,===chx,(ch(x)(,==sh(2)構(gòu)造函數(shù)F(x(=sh(x(-kx,x∈(0,+∞(,由(1)可知F,(x(=ch(x(-k,所以F,(x(=ch(x(-k>0,故F(x)為嚴(yán)格增函數(shù),②當(dāng)k>1時(shí),令G(x(=F,(x(,x∈(0則G,(x(=sh(x(>0,可知G(x(是嚴(yán)格增函數(shù),,(x)=G(x)<G(x0)=0,則F(x)在(0,x0)上為嚴(yán)格減函數(shù),所以原式變?yōu)?ex-x2-1(.ex>sin(x1+x2(-sinx1-x2cosx1,即證ex+x-sin(x1+x2(>ex-sinx1+x2(ex-cosx1(,設(shè)函數(shù)f(x(=ex-sinx,即證f(x1+x2(>f(x1(+x2f,(x1(,f,(x(=ex-cosx,設(shè)t(x(=f,(x(=ex-cosx,t,(x(=ex+sinx,x>0時(shí)t,(x(>0,t(x(在(0,+∞(上單調(diào)遞增,即f,(x(=ex-cosx在(0,+∞(上單調(diào)遞增,設(shè)h(x(=f(x+x1(-f(x1(-xf,(x1(,(x>0(,則h,(x(=f,(x+x1(-f,(x1(,由于f/(x(=ex-cosx在(0,+∞(上單調(diào)遞增,x+x1>x1,所以f/(x+x1(>f/(x1(,即h/(x(>0,故h(x(在(0,+∞(上單調(diào)遞增,所以f(x+x1(-f(x1(-xf/(x1(>0,即f(x+x1(>f(x1(+xf/(x1(,因此f(x1+x2(>f(x1(+x2f/(x1(恒成立,所以原不等式成立,得證.數(shù)的單調(diào)性以及在其他不等式的證明等方面都有著極其廣泛的應(yīng)用.伯努利不等式的一種常見形式,n∈N*.n<、2n+1-、2n-1,2+…+bn n<3(n*(;(2)已知函數(shù)f(x(=ax-elogax-e(a>1(.②討論f(x(的極值點(diǎn)的個(gè)數(shù).n<3.(2)①當(dāng)a=e時(shí),f(x(=ex-elnx-e,f/(x(=e由y=ex,y=-均在(0,+∞(單調(diào)遞增,所以f/(x(在(0,+∞(上單調(diào)遞增,,f(x(單調(diào)遞減;,f(x(單調(diào)遞增,從而f(x(≥f(1(=0,得證.②函數(shù)f(x(的定義域?yàn)?0,+∞(,f/(x(=axlna-=,設(shè)g(x(=xaxln2a-e,a>1,顯然函數(shù)g(x(在(0,+∞(上單調(diào)遞增,g(x(與f/(x(同號(hào),當(dāng)a>e時(shí),g(0(=-e<0,g(1(=ag(x(>0,故f(x(在(0,x0(單調(diào)遞減,在(x0,+∞(單調(diào)遞增;所以函數(shù)f(x(在(0,+∞(上有且僅有一個(gè)極值點(diǎn);當(dāng)a=e時(shí),由①知,函數(shù)f(x(在(0,+∞(上有且僅有一個(gè)極值點(diǎn);又g(1(=aln2a-e<0,所以函數(shù)g(x(在(1,內(nèi)有一個(gè)零點(diǎn)x1,(x(>0故f(x(在(0,x1(單調(diào)遞減,在(x1,+∞(單調(diào)遞增;所以函數(shù)f(x(在(0,+∞(上有且僅有一個(gè)極值點(diǎn);綜上所述,函數(shù)f(x(在(0,+∞(上有且僅有一個(gè)極值點(diǎn).f(x)的定義域?yàn)閇a,b[,如果對(duì)于[a,b[內(nèi)任意兩數(shù)x1,x2,都有f≤,則稱f(x(為 小組成員又了解到了琴生不等式(Jensen不等式):若f(x)是區(qū)間[a,b[上的凹函數(shù),則對(duì)任意的x1=x2=…=xn∈[a,b[,有不等式f≤恒成立(當(dāng)且僅當(dāng)x1=x2=…不等式求多元最值問題,關(guān)鍵是構(gòu)造函數(shù).小組成員選擇了反比例型函數(shù)f(x(=-和對(duì)數(shù)函數(shù)g(x(ri=ex),1[時(shí),不等式g(mx2+x(≤0恒成立,求實(shí)數(shù)m的取值范圍.(1)記函數(shù)f(x(=-,首先證明其凹凸性:?x1,x2∈(0,1(,則-f=+=1-x1+1-x2-2=[(1-x1(+(1-x2([2-4(1-x1((1-x2(= 2(1-x1((1-x2(1-x1+1-x22(1-x1((1-x2((1-x1+1-x2(所以f(x在(0,1(為凹函數(shù).(2)設(shè)ri=ex,因?yàn)閞i≥1,故xi≥0(i=1,2,3…n(要證++...+≥.只需證++…+≥由琴生不等式,只需證h(x(=在[0,+∞)為凹函數(shù).設(shè)x1,x2≥0,h 即證+1((ex1+1+ex2+1(≥2(ex1+1((ex2+1(,x1+ex2(≥0.即證-e2≥0,e≥1+x(≤0恒成立,即loga(mx2+x(≤0,因?yàn)閍>1,即0<mx2+x≤1恒成可得-<m≤在x∈(0,1[時(shí)恒成立.≥1,-∈(-∞,-1[,所以m>-1.由可得所以m≤0.故-1<m≤0.則稱f(x(為[a,b[上的凹函數(shù);若f,則稱f(x(為凸函數(shù).若f(x(是區(qū)間[a,b[f恒成立(當(dāng)且僅當(dāng)x1=x2=…=xn時(shí)等號(hào)成立).設(shè)ri=ex)則-f=-=1-x1+1-x2-2=[(1-x1(+(1-x2([2-4(1-x1((1-x2(2(1-x1((1-x2(1-x1+1-x22(1-x1((1-x2((1-x1+1-x2(2(1-x1((1-x2((1-x1+1-x2(=[2(1-x1((1-x2((1-x1+1-x2(上也為凹函數(shù).(3)設(shè)ri=ex,因?yàn)閞i≥1,所以xi≥0(i=1,2,3,…,n(,由琴生不等式,只需證h(x(=在[0,+∞(上為凹函數(shù). 即證+1((ex1+1+exi+1(≥2(exi+1((ex2+1(,即證-e2(≥0(*(,又≥0,e≥1,(*(式顯然成立,所以≥h成立,h(x(在[0,+∞(上為凹函數(shù),則得證.l=0,則稱函數(shù)f(x(為區(qū)間[0,a[上的k階無窮遞降函數(shù).(1)證明f(x(=x3-3x不是區(qū)間[0,3[上的2階無窮遞降函數(shù); 1(2)計(jì)算:l+x(x; 1(1)記H(x(=f(x(-f=x3-x, 因?yàn)镠所以f(x(≥f在區(qū)間[0,3[不恒成立,所以,f(x(=x3-3x不是區(qū)間[0,3[上的2階無窮遞降函數(shù).11所以llng(x(=1,所以l+x(x=e.所以f(t(>f>...>f,t(>1.=f(x(在點(diǎn)Q1(x1,f(x1((處切線,切線與x軸交于點(diǎn)P2(x2,0(,再作y=f(x(在點(diǎn)Q2(x2,f(x2((處切線,切線與x軸交于點(diǎn)P3(x3,0(,再作y=f(x(在點(diǎn)Q3(x3,f(x3((處切線,以此類推,直到求得滿足精度的零點(diǎn)近似解xn(n≥2(為止.(3)設(shè)函數(shù)f(x(=x2,令xn+1=g(xn(=xn,且b-a=1,若函數(shù)h(x(=ex-ax2,φ(x(=xlnx-x2+(1)由函數(shù)f(x(=x3-6,則f/(x(=3x2,那么在Q點(diǎn)處的切線方程為y+5=3(x-1(,(2)設(shè)Pn(xn,0(,則Qn(xn,f(xn((,因?yàn)閒(x(=2x,所以f/(x(=2xln2,則Qn(xn,f(xn((處切線為y=2xln2.(x-xn(+2x,切線與x軸相交得Pn+1(xn+1,0(,PPf(xn(=2-=(2-log2e(n-1=,(3)曲線y=f(x(在(xn,f(xn((處的切線為y-f(xn(=f/(xn((x-xn(,所以切線與x軸交點(diǎn)橫坐標(biāo)為xn+1=xn,當(dāng)函數(shù)f(x(=x2時(shí),即xn+1=xn-=xn-=xn-xn=xn=g(xn(,故h(x(=ex-x2,曲線y=h(x(的一條切線方程為y=(e-2(x+1,x-x2≥xlnx-x2+(e-1(x+1,x+(1-e(x-xlnx-1≥0,又h(1(=e-1,故曲線y=h(x(在x=1處的切線方程為y=( 證明:設(shè)m(x(=h(x(-(e-2(x-1=ex-x2-(e-2(x-1,x>0,則m/(x(=ex-2x-(e-2(,令F(x(=m/(x(,則F/(x(=ex-2且在(0,+∞(上單增,當(dāng)x∈(0,ln2(時(shí),F(xiàn)/(x(<0,故m/(x(單調(diào)遞減;當(dāng)x∈(ln2,+∞(時(shí),F(xiàn)/(x(>0,故m/(x(單調(diào)遞0那么m(x(在(0,x0(上單調(diào)遞增,在(x0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,又m(0(=m(1(=0,∴m(x(=ex-x2-(e-2(x-1≥0(x>0(,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),所以x≥lnx+1,即≥lnx+1.所以,ex+(2-e(x-1≥xlnx+x,x+(1-e(x-xlnx-1≥0成立,當(dāng)x=1時(shí)等號(hào)成立.另要證h(x(≥φ(x(,即ex-x2≥xlnx-x2+(e-1(x+1,等價(jià)于xlnx+(e-1(x+1-ex≤0,令G(x(=lnx+e-1G/(x,,G(x(單調(diào)遞增;,+∞(時(shí),G/(x(<0,G(x(單調(diào)遞減;∴G(x(有最大值F(1(=0,即G(x(≤0恒成立,即當(dāng)x>0時(shí),h(x(≥φ(x(.l=0,則稱函數(shù)f(x(為區(qū)間[0,a[上的k階無窮遞降函數(shù).(1)試判斷f(x(=x3-3x是否為區(qū)間[0,3[上的2階無窮遞降函數(shù); 1 1(1)設(shè)F(x(=f(x(-f=x3-x,由于F所以f(x(≥f不成立,故f(x(=x3-3x不是區(qū)間[0,3[上的2階無窮遞降函數(shù).(2)設(shè)g(x(=則lng(xln(1+x設(shè)h(x(3)令x-π=t,則原不等式等價(jià)于tant.sin2t≥t3,t,記f(t則f即有對(duì)任意t,均有f(t(>f所以f(t(>f所以f(t(>1,t,證畢!新時(shí)期,為研究變量和函數(shù)提供了重要的方法和手段.對(duì)于函數(shù)f(x,f(x(在區(qū)間[a,b[上域(稱為曲邊梯形ABQP)的面積,根據(jù)微積分基本定理可得dx=lnb-lna,因?yàn)榍吿菪蜛BQP的面積小于梯形ABQP的面積,即S曲邊梯形ABQP<S梯形A ①證明:對(duì)任意兩個(gè)不相等的正數(shù)x1,x2,曲線y=f(x(在(x1,f(x1((和(x2,f(x2((處的切線均不重合;②當(dāng)b=-1時(shí),若不等式f(x(≥2sin(x-1(恒成立,求實(shí)數(shù)a的取值范圍.(1)在曲線y取一點(diǎn)M過點(diǎn)M,作f(x(的切線分別交AP,BQ于M1,M2,因?yàn)镾曲邊梯形ABQP>S梯形ABMM,可得lnb-lna>.(|AM1|+|BM2|(.|AB|=.2..(b-a(,即<.(2)①由函數(shù)f(x(=ax2+bx+xlnx,可得f/(x(=2ax+lnx+b+1,不妨設(shè)0<x1<x2,曲線y=f(x(在(x1,f(x1((處的切線方程為l1:y-f(x1(=f/(x1((x-x1(,即y=f/(x1(x+f(x1(-x1f/(x1(同理曲線y=f(x(在(x2,f(x2((處的切線方程為l2:y=f/(x2(x+f(x2(-x2f/(x2(,ff(x2(-x2f/(x2(,即對(duì)任意實(shí)數(shù)a,b及任意不相等的正數(shù)x1,x2,l1與l2均不重合.②當(dāng)b=-1時(shí),不等式f(x(≥2sin(x-1(恒成立,所以h(x(=ax2-x+xlnx-2sin(x-1(≥0在(0,+∞(恒成立,所以h(1(≥0→a≥1,因?yàn)閍≥1,所以h(x(≥x2-x+xlnx-2sin(x-1(設(shè)H(x(=x2-x+xlnx-2sin(x-1(,H/(x(=2x+lnx-2cos(x-1((i)當(dāng)x∈[1,+∞(時(shí),由2x≥2,,lnx≥0,-2cos(x-1(≥-2知H/(x(≥0恒成立,即H(x(在[1,+∞(為增函數(shù),所以H(x(≥H(1(=0成立;(ii)當(dāng)x∈(0,1(時(shí),設(shè)G(x(=2x+lnx-2cos(x-1(,可得G/(x(=2由2sin(x-1(≥-2,>0知G/(x(≥0恒成立,即G(x(=H/(x(在(0,1(為增函數(shù).所以H/(x(<H/(1(=0,即H(x(在(0,1(為減函數(shù),所以H(x(>H(1(=0成立,27.拉格朗日中值定理是微分學(xué)的基本定理之一,內(nèi)容為:如果函數(shù)f(x(在閉區(qū)間[a,b[上的圖象連續(xù)不間斷,在開區(qū)間(a,b(內(nèi)的導(dǎo)數(shù)為f/(x(,那么在區(qū)間(a,b(內(nèi)至少存在一點(diǎn)c,使得f(b(-f(a(=f/(c((b-a(成立,其中c叫做f(x(在[a,b[上的“拉格朗日中值點(diǎn)”.根據(jù)這個(gè)定理,可得函數(shù)f(x(=A.1B.eC.e-1D.【解析】由f(x(=lnx可得f,(x(=,令x0為函數(shù)f(x(=lnx在[1,e[上的“解得x0=e-1.法則,即在一定條件下通過對(duì)分子、分母分別求導(dǎo)再求極限來確定未定式值的方法,如A.B.C.1D.2法則,即在一定條件下通過對(duì)分子、分母分別求導(dǎo)再求極限來確定未定式值的方法,如A.B.C.1D.230.拉格朗日中值定理是微分學(xué)的基本定理之一,定理內(nèi)容為:如果函數(shù)f(x)在區(qū)間[a,b]上的圖像連續(xù)不間斷,在開區(qū)間(a,b)內(nèi)的導(dǎo)數(shù)為f,(x),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)c,使得f(b)-f(a)=f,(c)(b在,|上的拉格朗日中值點(diǎn)的個(gè)數(shù)為.【解析】f,(x(=2cos(2x-0為函數(shù)f(x(在,π|上的拉格朗日中值點(diǎn), 少存在一個(gè)數(shù)ξ,使得f(b(-f(a(=f/(ξ((b-a(,其中ξ稱為拉格朗日中值.函數(shù)g(x(=lnx+x在區(qū)間[1,2[上的拉格朗日中值ξ=.由拉格朗日中值的定義可知,函數(shù)g(x(=lnx+x在區(qū)間[1,2[上的拉格朗日中值ξ滿足,g(2(-g(1(=/(ξ((2-1(所以g/(ξ(=g(2(-g(1(=ln2+2-1=ln2+1(1)在閉區(qū)間[a,b[上是連續(xù)不斷的;(2)在區(qū)間(a,b(上都有導(dǎo)數(shù).則在區(qū)間(a,b(上至少存在一個(gè)實(shí)數(shù)t,使得f(b(-f(a(=f'(t((b-a(,其中t稱為“拉格朗日中值”.函方面留下了很多寶貴的成果.設(shè)函數(shù)f(x(在(a,b(上的導(dǎo)函數(shù)為f/(x(,f/(x(在(a,b(上的導(dǎo)函數(shù)為f(x(,若在(a,b(上fⅡ(x(<0恒成立,則稱函數(shù)f(x(在(a,b(上為“凸函數(shù)”,已知f(x(=ex-xlnx-【答案】m≥e2-【解析】函數(shù)f(x)=ex-xlnx-x2,求導(dǎo)得f/(x)=ex-1-lnx-mx,fⅡ(x)=ex--m,x)<0?m>ex-恒成立,而函數(shù)g(x)=ex-在(1,2)上單調(diào)遞增,g(x)<g(2)=e2-,則m≥e2-,所以實(shí)數(shù)m的取值范圍是m≥e2-.故答案為:m≥e2-了很多寶貴的成果.定義:函數(shù)f(x)在(a,b(上的導(dǎo)函數(shù)為f/(x),f/(x)在(a,b(上的導(dǎo)函數(shù)為fⅡ(x(,若③函數(shù)f(x)=ex-xlnx-x2在(1,4(為“嚴(yán)格凸函數(shù)”,則m的取值范圍為[e-1,+∞(.【解析】f(x)=-x3+3x2+2的導(dǎo)函數(shù)f/(x)=-3x2+6x,fⅡ(x)=-6x+6,fⅡ(x)<0在(1,+∞(上恒成立,f(x)=ex-xlnx-x2的導(dǎo)函數(shù)f/(x)=ex-lnx-1-mx,fⅡ(x)=ex--m,函數(shù)f(x)=ex-xlnx-x2在(1,4(為“嚴(yán)格凸函數(shù)”可得ex--m<0在(1,4(上恒成立,即m>ex設(shè)g=ex所以g(x)在(1,4(單調(diào)遞增,所以g(x)<g(4)=e4-,所以m≥e4-,所以③不正確; f(x)=ex-xlnx-x2的導(dǎo)函數(shù)f,(x)=ex-lnx-1-mx,fⅡ(x)=ex--m,fⅡ(x)<0,所以ex--即m>ex-,設(shè)g(x)=ex-,則g(x)在(1,4(單調(diào)遞增,所以g(x)<e4-,所以m≥e4-,所以③不正確;37.英國(guó)數(shù)學(xué)家泰勒發(fā)現(xiàn)了如下公式:sinx=x-+-+…,c精確性.(1)cos0.3≈1-+=1-+==.2,故tanx>x,x∈(0,.故c>b>a而cos=1-+××-××-×-…<1-+×=+,且+=-=>0,故c>b>a.38.英國(guó)數(shù)學(xué)家泰勒發(fā)現(xiàn)了如下公式:ex=1+x+++…++…其中n!=1×2×3×4×…×n為自然對(duì)數(shù)的底數(shù),e=2.71828…….以上公式稱為泰勒公式.設(shè)f(xg(x根x≥1+x;(1)令h(x(=ex-x-1,則h/(x(=ex-1,/(x(>0/(x(<0,故h(x(在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增,故h(x(在x=0處取得極小值,也是最x≥x+1;(2)<g(x(?ex-e-x<xex+xe-x?(1-x(ex-(1+x(e-x<0,x∈(0,+∞(, 令q(x(=(1-x(ex-(1+x(e-x,x∈(0,+∞(,則q/(x(=-xex+xe-x=-x(ex-e-x(,x(=-x(ex-e-x(<0,故q(x(=(1-x(ex-(1+x(e-x在x∈(0,+∞(上單調(diào)遞減故q(x(<q(0(=0,即(1-x(ex-(1+x(e-x<0,結(jié)論得證;(3)F(x(=g(x(-a(1+=-a(1+,則F/(x(=-ax,令G(x(=F/(x(,x(=-a≥-a≥1-1=0,故G(x(=F/(x(在R上單調(diào)遞增,故F(x(在x∈(0,+∞(上單調(diào)遞增,在x∈(-∞,0(上單調(diào)遞減,函數(shù)近似表示,具體形式為:f=f(x0(+f/(x0((x-xx-xx-x0(n+…(其中f(n)(x)表示f(x)的n次導(dǎo)數(shù)),以上公式我們稱為函數(shù)f(x)在x=x0處的秦勒展開式.(1)因?yàn)楹瘮?shù)f(x(在x=x0處的泰勒展開式為f(x(=f(x0(+f’(x0((x-x0(+(x-x0(2+…+(x-x0(n+…(其中f(n((x(表示f(x(的n次導(dǎo)數(shù)),ex=1+x+x2+…+xn+…;cosx=1-x2+x4+…+x2n+….eix=1+(ix)+(ix)2+(ix)3+(ix)4+…+(ix)n+…令f(x)=sinx-x+x3,f’(x)=cosx-1+x2,fⅡ(x)=x-sinx,所以fⅡ(x)>fⅡ(0)=0,所以f/(x)在(0,上單調(diào)遞增,所以f/(x)>f/(0)=0,所以f上單調(diào)遞增,所以f>f再令g=xx3-ln,x而g(0)=0,g=-ln>0,則sinx>x-x3>ln(x+1),(1)設(shè)m(x(=ex-x-1,則m/(x)=ex-1,x)<0,所以m(x)在(-∞,0)上單調(diào)遞減,于是e-x=1-x+-+-+…+(-1)n+…②,由①②得f(x)==x+++…+-+…,g(x)==1+++…++…,(3)由知f 令h=f-kxx3,則h/(x解得x1=ln(k或x2=ln(k(x)<0,得φ(x)在(0,x2(上單調(diào)遞減,從而t(x(在(0,x2(上單調(diào)遞減,故t(x(<t(0(=1-k<0,即h/(x(<h/(0(=1-k<0,因此h(x)在(0,x2(上單調(diào)遞減,所以h(x)<h(0)=0,矛盾,41.(2024·高三·四川成都·開學(xué)考試)麥克勞林展開式是泰勒展開式的一種特殊形式,f(x(的麥克勞林展開式為:f(x(=f(0(+f/(0(xxnxn,其中f(n((0(表示f(x(的n階(1)因?yàn)閒/(x(=cosx,f(2((x(=-sinx,f(3((x(=-cosx,(2)設(shè)g(x(=ln(1+x(-x因?yàn)閤>0,所以g/(xg(x(單調(diào)遞增,所以g(x(>g(0(=ln1-0+0=0,所以ln(1+x(>x當(dāng)m=3時(shí),設(shè)h(x(=ex+lnx+--3x=1+x+++lnx+--3xh(x(=+lnx+-2x,h/(x(=x+-2≥2-2=0當(dāng)x>1,h/(x(>0,h(x(單調(diào)遞增,則h(x(>h(1(=ln1+-2+=0,數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x且滿足:f(0(=R(0(,f/(0(=R/(0(,fⅡ(0(=RⅡ(0(,...,f(m+n((0(=R(m+n((0(.(注:fⅡ(x(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x([/,f(n((x(為f(n-1((x(的導(dǎo)數(shù))已知f(x(=ln(x+1(在x=0處的[1,1[階帕德近似為g(x(1)求實(shí)數(shù)m,n的值;(3)設(shè)a為實(shí)數(shù),討論函數(shù)h(x(=f(x(-ax的單調(diào)性.(1)由f(x(=ln(x+1(,g(x(=知:f(0(=g(0(=0;令φ(x(=f(x(-g(x(=ln(x+1(-(x≥0(,則(xφ(x(在[0,+∞(上單調(diào)遞增,又φ(0(=f(0(-g(0(=0,∴φ(x(≥φ(0(=0,即當(dāng)x≥0時(shí),f(x(≥g(x(.(3)由題意知:h(x(=f(x(-ax=ln(x+1(-ax(x>-1(,∴h(x(在(-1,+∞(上單調(diào)遞增; ∴h(x(在(-1,-1(上單調(diào)遞增,在-1,+∞(上單調(diào)遞減;綜上所述:當(dāng)a≤0時(shí),h(x(在(-1,+∞(上單調(diào)遞增;當(dāng)a>0時(shí),h(x(在(-1,-1(上單調(diào)遞增,在-1,+∞(上單調(diào)遞減.算機(jī)數(shù)學(xué)中有著廣泛的應(yīng)用.已知函數(shù)f(x)在x=0處的[m,n[階帕德近似定義為:R(x)=,且滿足:f(0)=R(0),f/(0)=R/(0),f(2)(0)=R(2)(0),…,f(m+n)(0)=R(m+n)(0).其中f(2)(x)=[f/(x)[/,f(3)(x)=[f(2)(x)[/,…,f(m+n)(x)=[f(m+n-1)(x)[/.已知f(x)=ln(x+1)在x=0處的[2,2[階帕德近似為R(2)設(shè)h(x(=f(x(-R(x(,證明:xh(x)≥0;-1.(1)依題意可知,f(0)=0,R(0)=a,因?yàn)閒(0)=R(0),所以a=0,(2)依題意,h(x)=f(x)-R(x)=ln(1+x)-,故h(x)在(-1,+∞)單調(diào)遞增,綜上,?x>-1,xh(x)≥0;(3)不妨設(shè)x1<x2<x3,令t(x)=lnx-λ(x-,/(x)>0當(dāng)λ>0時(shí),令s(x)=-λx2+x-λ,其判別式Δ=1-4λ2,/(x)≤0,此時(shí)t(x)單調(diào)遞減,t(x)=0不存在三個(gè)不等實(shí)根;(x)=0存在兩個(gè)不等正實(shí)根r1,r2(r1<r2(,r1,r2(時(shí),t/(x)>0,t(x)單調(diào)遞增,r2,+∞(時(shí),t/(x)<0,t(x)單調(diào)遞減,(1)=1-2λ>0,故t(r1(<0,t(r2(>0,因?yàn)閘nx<x-1(x≠1),所以所以t(λ4(=lnλ4-λ(λ4->2--λ5+=(2-λ5(+-2(>0,4,r1(,滿足t(x1(=0,又因?yàn)閠=ln-λ-x(=-lnx+λ(x-=-t(x),數(shù)f(x(在x=0處的[m,n[階帕德近似定義為R(x,且滿足:f(0(=R(0(,f/(0(=R/(0(,fⅡ(0(=RⅡ(0(..f(m+n((0(=R(m+n((0(.已知f(x(=ln(x+1(在x=0處的[1,1[階帕德近似為R(x(=.注:fⅡ(x(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4(x=[f川(x([/,f(5(x=[f(4(x[/...(2)求證:(x+b(f(1)∵R(x(=∴R/(x(=,RⅡ(x(=∵f(x(=ln(x+1(,則f/(xfⅡ(x 則(t:(x+ln(1+>1成立,即(x+b(f>1成立.,即x>0或x<-1又由(2)知(x+ln(1+>1成立,記h(x(=lnx-x+1,x∈(0,1(U(1,+∞(,則h/(x(=-1=,:當(dāng)0<x<1時(shí),h/(x(>0,x>1:h(x(<h(1(=0,即lnx<x-1,x∈(0,1(U(1,+∞(:ln(1+<,x∈(-∞,-1(U(0,+∞(當(dāng)x∈(-∞,-1(時(shí)由ln(1+<,可知xln(1+<1不成立;x<e<(1+x+的解集為(0,+∞(.45.(2024·江蘇揚(yáng)州·模擬預(yù)測(cè))帕德近似是法國(guó)數(shù)學(xué)家帕德發(fā)明的用多項(xiàng)式近似特定函數(shù)的方法.給定兩個(gè)正整數(shù)m,n,函數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x且滿足:f(0(=R(0(,f/(0(=R/(0(,fⅡ(0(=RⅡ(0(,…,f(m+n((0(=R(m+=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x)[/,…已知f(x(=ex在x=0處的[1,1[階帕德近似為(1)由題意得R/(xRⅡ(xf(0(=f/(0(=fⅡ(0(=1,故R/(0(=a-b=1,RⅡ(0(=-2b(a-b(=1,-x的大小,令g(xe-x,g/(xe-xe-x,所以g/(x(>0,從而可得g(x(在(0,1(上單調(diào)遞增,所以f(x(<R(x(.(3)設(shè)u(x(=ex-x-1,u/(x(=ex-1,/(x(<0,u(x(在(-∞,0(上單調(diào)遞減,/(x(>0,u(x(在(0,+∞(上單調(diào)遞增,ean令y=(1-x(ex,y/=-xex,故該函數(shù)在(0,+∞(上遞減,n+1<ann≤;故-1>2n-1-1(=2n-1,aaa-e-2-an≥0令g(x(=e-e-,g/(x(=e+e--1,故g/(x(=e+e-≥0,所以g(x(在(0,單調(diào)遞增,所以g(x(≥g(0(=0,得證. 數(shù)f(x(在x=0處的[m,n[階帕德近似定義為:R(x,且滿足:f(0(=R(0(,f/(0(=R/(0(,fⅡ(0(=RⅡ(0(,……,f(m+n((0(=R(m+n((0(,注:fⅡ(x(=[f/(x([/,f川(x(=[fⅡ(x([/,f(4((x(=[f川(x([/,f(5((x(=[f(4((x([/,……已知函數(shù)f(x(=ln(x+1(.(1)求函數(shù)f(x(=ln(x+1(在x=0處的[1,1[階帕德近似R(x(.②若f(x(-m+1(R(x(≤1-cosx恒成立,求實(shí)數(shù)m的取值范圍.(1)由題可知函數(shù)f(x(=ln(x+1(在x=0處的[1,1[階帕德近似,則R(x(=,f/(x(=,fⅡ(x(=-,由f(0(=R(0(得a0=0,所以R(x(=,則R/(x(=,所以R(x(2)①令F(x(=-ln(x+1(,x∈(-1,0(∪(0,+∞(,因?yàn)镕/(x所以F(x(在x∈(-1,0(及(0,+∞(上均單調(diào)遞減.當(dāng)x∈(-1,0(,F(xiàn)(x(>F(0(=0,即>ln(x+1(,②由f(x(-m+1(R(x(≤1-cosx得ln(x+1(-mx+cosx-1≤0在(-1,+∞(上恒成立,令h(x(=ln(x+1(-mx+cosx-1,且h(0(=0,所以x=0是h(x(的極大值點(diǎn),又h/(x(=-m-sinx,故h/(0(=1-m=0,則m=1,當(dāng)m=1時(shí),h(x(=ln(x+1(-x+cosx-1,所以h/(xsinx-1=-sinx故h(x(在(-1,0(上單調(diào)遞增,所以當(dāng)x∈(-1,0(時(shí),h(x(<h(0(=0,當(dāng)x∈(0,+∞(時(shí),h(x(=[ln(x+1(-x[+(cosx-1(,令φ(x(=ln(x+1(-x,因?yàn)棣?(x(=-1<0,所以φ(x(在(0,+∞(上單調(diào)遞減,所以φ(x(<φ(0(=0,故當(dāng)x∈(0,+∞(時(shí),h(x(=[ln(x+1(-x[+(cosx-1(<0,綜上,當(dāng)m=1時(shí),f(x(-m+1(R(x(≤1-cosx恒成立.柯西(Cauchy(中值定理,它們被稱為微分學(xué)的三大中值定理.羅爾中值定理的描述如下:如果函數(shù)f(x(滿足三個(gè)條件①在閉區(qū)間[a,b[上的圖象是連續(xù)不斷的,②在開區(qū)間(a,b(內(nèi)是可導(dǎo)函數(shù),③f(a(=f(b(,那么在(a,b(內(nèi)至少存在一點(diǎn)ξ(a<ξ<b),使得等式f/(ξ(=0成立.(1)設(shè)方程a0xn+a1xn-1+…+an-1x=0有一個(gè)正根x=x0,證明:方程a0nxn-1+a1(n-1(xn-2+…+an-1(2)設(shè)函數(shù)f(x(是定義在R上的連續(xù)且可導(dǎo)函數(shù),且f(-x(+f(x(=0.證明:對(duì)于m>0,方程f/(x(-f(m(m=0在(-m,f(m((3)設(shè)函數(shù)f(x(=ex-ax2-(e-a-1(x-1.證明:函數(shù)g(x(=2f(x(+f/(x(在區(qū)間(0,1(內(nèi)至少存在一個(gè)零點(diǎn).(1)證明:令函數(shù)f(x(=a0xn+a1xn-1+…+an-1x,顯然f(x(在[0,x0[上連續(xù),在(0,x0(內(nèi)可導(dǎo),則f/(x(=a0nxn-1+a1(n-1(xn-2+…+an-1,由條件知f(0(=f(x0(=0,即方程a0nxn-1+a1(n-1(xn-2+…+an-1=0必有一個(gè)小于x0的正根.由f(-x(+f(x(=0,得f(0(=0,所以g(0(=f(0(-0=0.因?yàn)間(-m(=f(-m(+f(m(=0,所以g(-m(=g(0(,即f/(x同理,因?yàn)間(m(=f(m(-f(m(=0,由羅爾中值定理知,x2(=f/(x2(-=0.故方程f/(x(-=0在(-m,m(內(nèi)至少存在兩個(gè)不同的解.(3)證明:令F(x(=e2xf(x(,則F/(x(=e2x[2f(x(+f/(x([=e2xg(x(.由f(x(=ex-ax2-(e-a-1(x-1,得f(0(=f(1(=0,則F(0(=F(1(=0,又因?yàn)镕(x(是連續(xù)且可導(dǎo)函數(shù),g(ξ(=0.故函數(shù)g(x(=2f(x(+f/(x(區(qū)間(0,1(內(nèi)至少存在一個(gè)零點(diǎn). f(a)=f(b),那么在區(qū)間(a,b)內(nèi)至少存在一點(diǎn)m,使得fI(m)=0.(2)已知函數(shù)f(x)=xlnx,g(x)=x2-bx+1,若對(duì)于區(qū)間(1,2)|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求實(shí)數(shù)b的取值范圍.【解析】t,則f-bt=f-at,令函數(shù)F(x)=f(x)-tx,則F(a)=F(b),FI(x)=fI(x)-t,即fI-t=0,:fI(2)依題意,fI(x)=lnx+1,gI(x)=x-b,由(1)得|fI(x)|>|gI(x)|,x∈(1,2),于是lnx+1>|x-b|,即-1-lnx<b-x<lnx+1,因此x-lnx-1<b<x+lnx+1,令φ(x)=x-lnx-1(1<x<2),:實(shí)數(shù)b的取值范圍是1-ln2≤b≤2.49.已知函數(shù)f(x(=x2-3x+alnx,a∈R.(1)由題意可知當(dāng)a=1時(shí),f(x(=x2-3x+lnx,f(1(=1-3+0=-2,fI(x(=2x-3+,所以函數(shù)f(x(的在點(diǎn)(1,-2(處切線的斜率k=fI(1(=2-3+1=0,所以函數(shù)f(x(的在點(diǎn)(1,-2(處的切線為y=-2.(2)由題意可得fI(x(=2x-3若函數(shù)f(x(在區(qū)間[1,2[上單調(diào)遞減,則2x2-3x+a≤0在x∈[1,2[恒成立,即a≤-2x2+3x在x∈[1,2[恒成立,只需a≤(-2x2+3x(min即可,,2[時(shí)y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年投資顧問面試考核題及參考答案
- 2026年部門秘書考試題庫(kù)與答案
- 2026年商業(yè)地產(chǎn)運(yùn)營(yíng)部主任工作要點(diǎn)與常見問題解析
- 2026年容器技術(shù)面試題集
- 初中英語寫作中祈使句誤用現(xiàn)象的認(rèn)知診斷與干預(yù)策略課題報(bào)告教學(xué)研究課題報(bào)告
- 《基于云計(jì)算的智能客服系統(tǒng)安全性與隱私保護(hù)研究》教學(xué)研究課題報(bào)告
- 小學(xué)英語教學(xué)中戲劇表演法的語言輸出課題報(bào)告教學(xué)研究課題報(bào)告
- 基于人工智能的智慧校園學(xué)習(xí)環(huán)境自適應(yīng)調(diào)整機(jī)制在心理康復(fù)師培訓(xùn)課程設(shè)計(jì)中的應(yīng)用教學(xué)研究課題報(bào)告
- 高中生物實(shí)驗(yàn)教學(xué)中實(shí)驗(yàn)倫理教育融入研究課題報(bào)告教學(xué)研究課題報(bào)告
- 初中化學(xué)課程數(shù)字化評(píng)價(jià)對(duì)學(xué)生實(shí)驗(yàn)操作能力培養(yǎng)的研究教學(xué)研究課題報(bào)告
- 拆遷勞務(wù)合同協(xié)議
- 2025年云南省交通投資建設(shè)集團(tuán)有限公司下屬港投公司社會(huì)招聘51人備考題庫(kù)完整參考答案詳解
- 2025中國(guó)融通資產(chǎn)管理集團(tuán)有限公司招聘(230人)(公共基礎(chǔ)知識(shí))測(cè)試題附答案解析
- 工作交接表-交接表
- 2025年課件-(已瘦身)2023版馬原馬克思主義基本原理(2023年版)全套教學(xué)課件-新版
- 2025云南省人民檢察院招聘22人考試筆試備考題庫(kù)及答案解析
- 2025國(guó)家統(tǒng)計(jì)局齊齊哈爾調(diào)查隊(duì)招聘公益性崗位5人筆試考試備考題庫(kù)及答案解析
- 全膀胱切除課件
- 學(xué)堂在線 雨課堂 學(xué)堂云 醫(yī)學(xué)英語詞匯進(jìn)階 期末考試答案
- MOOC 工程材料學(xué)-華中科技大學(xué) 中國(guó)大學(xué)慕課答案
- 車間技術(shù)提升的人才培養(yǎng)與知識(shí)傳承
評(píng)論
0/150
提交評(píng)論