2026屆浙江省嘉興市嘉善縣數(shù)學九上期末經典試題含解析_第1頁
2026屆浙江省嘉興市嘉善縣數(shù)學九上期末經典試題含解析_第2頁
2026屆浙江省嘉興市嘉善縣數(shù)學九上期末經典試題含解析_第3頁
2026屆浙江省嘉興市嘉善縣數(shù)學九上期末經典試題含解析_第4頁
2026屆浙江省嘉興市嘉善縣數(shù)學九上期末經典試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆浙江省嘉興市嘉善縣數(shù)學九上期末經典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.在下列四種圖形變換中,如圖圖案包含的變換是()A.平移、旋轉和軸對稱 B.軸對稱和平移C.平移和旋轉 D.旋轉和軸對稱2.如圖所示的中心對稱圖形中,對稱中心是()A. B. C. D.3.如圖,是反比例函數(shù)與在x軸上方的圖象,點C是y軸正半軸上的一點,過點C作軸分別交這兩個圖象與點A和點B,P和Q在x軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于()A.20 B.15 C.10 D.54.如圖,AB是半圓的直徑,點D是的中點,∠ABC=50°,則∠DAB等于()A.65° B.60° C.55° D.50°5.二次函數(shù)y=x2﹣2x+2的頂點坐標是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)6.在半徑為3cm的⊙O中,若弦AB=3,則弦AB所對的圓周角的度數(shù)為()A.30° B.45° C.30°或150° D.45°或135°7.如圖,拋物線y=﹣x2+2x+2交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.下列說法:其中正確判斷的序號是()①拋物線與直線y=3有且只有一個交點;②若點M(﹣2,y1),N(1,y2),P(2,y3)在該函數(shù)圖象上,則y1<y2<y3;③將該拋物線先向左,再向下均平移2個單位,所得拋物線解析式為y=(x+1)2+1;④在x軸上找一點D,使AD+BD的和最小,則最小值為.A.①②④ B.①②③ C.①③④ D.②③④8.如圖,A為反比例函數(shù)y=的圖象上一點,AB垂直x軸于B,若S△AOB=2,則k的值為()A.4 B.2 C.﹣2 D.19.已知反比例函數(shù)y=的圖象經過點(3,2),那么下列四個點中,也在這個函數(shù)圖象上的是()A.(3,-2) B.(-2,-3) C.(1,-6) D.(-6,1)10.在平面直角坐標系中,將橫縱坐標之積為1的點稱為“好點”,則函數(shù)的圖象上的“好點”共有()A.1個 B.2個 C.3個 D.4個11.下列命題正確的是()A.對角線相等四邊形是矩形B.相似三角形的面積比等于相似比C.在反比例函數(shù)圖像上,隨的增大而增大D.若一個斜坡的坡度為,則該斜坡的坡角為12.將拋物線向左平移2個單位后,得到的拋物線的解析式是()A. B.C. D.二、填空題(每題4分,共24分)13.如圖,圓錐的軸截面(過圓錐頂點和底面圓心的截面)是邊長為4cm的等邊三角形ABC,點D是母線AC的中點,一只螞蟻從點B出發(fā)沿圓錐的表面爬行到點D處,則這只螞蟻爬行的最短距離是_______cm.14.如圖,以AB為直徑,點O為圓心的半圓經過點C,若AC=BC=,則圖中陰影部分的面積是___________15.如圖,已知OP平分∠AOB,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.CP=,PD=1.如果點M是OP的中點,則DM的長是_____.16.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E,若AB=2,則k的值為________.17.一個扇形的弧長是,面積是,則這個扇形的圓心角是___度.18.點A(a,3)與點B(﹣4,b)關于原點對稱,則a+b=_____.三、解答題(共78分)19.(8分)如圖,矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā),以每秒一個單位的速度沿A→B→C的方向運動;同時點Q從點B出發(fā),以每秒2個單位的速度沿B→C→D的方向運動,當其中一點到達終點后兩點都停止運動.設兩點運動的時間為t秒.(1)當t=時,兩點停止運動;(2)設△BPQ的面積面積為S(平方單位)①求S與t之間的函數(shù)關系式;②求t為何值時,△BPQ面積最大,最大面積是多少?20.(8分)如圖,已知AB為⊙O的直徑,點E在⊙O上,∠EAB的平分線交⊙O于點C,過點C作AE的垂線,垂足為D,直線DC與AB的延長線交于點P.(1)判斷直線PC與⊙O的位置關系,并說明理由;(2)若tan∠P=,AD=6,求線段AE的長.21.(8分)在平面直角坐標系中,直線分別與,軸交于,兩點,點在線段上,拋物線經過,兩點,且與軸交于另一點.(1)求點的坐標(用只含,的代數(shù)式表示);(2)當時,若點,均在拋物線上,且,求實數(shù)的取值范圍;(3)當時,函數(shù)有最小值,求的值.22.(10分)如圖,在中,于點.若,求的值.23.(10分)如圖,拋物線(a≠0)經過A(-1,0),B(2,0)兩點,與y軸交于點C.(1)求拋物線的解析式及頂點D的坐標;(2)點P在拋物線的對稱軸上,當△ACP的周長最小時,求出點P的坐標;(3)點N在拋物線上,點M在拋物線的對稱軸上,是否存在以點N為直角頂點的Rt△DNM與Rt△BOC相似,若存在,請求出所有符合條件的點N的坐標;若不存在,請說明理由.24.(10分)直線與軸交于點,與軸交于點,拋物線經過兩點.(1)求這個二次函數(shù)的表達式;(2)若是直線上方拋物線上一點;①當?shù)拿娣e最大時,求點的坐標;②在①的條件下,點關于拋物線對稱軸的對稱點為,在直線上是否存在點,使得直線與直線的夾角是的兩倍,若存在,直接寫出點的坐標,若不存在,請說明理由.25.(12分)對于平面直角坐標系xOy中的點P和圖形G,給出如下定義:將點P沿向右或向上的方向平移一次,平移距離為d(d>0)個長度單位,平移后的點記為P′,若點P′在圖形G上,則稱點P為圖形G的“達成點”.特別地,當點P在圖形G上時,點P是圖形G的“達成點”.例如,點P(﹣1,0)是直線y=x的“達成點”.已知⊙O的半徑為1,直線l:y=﹣x+b.(1)當b=﹣3時,①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三點中,是直線l的“達成點”的是:_____;②若直線l上的點M(m,n)是⊙O的“達成點”,求m的取值范圍;(2)點P在直線l上,且點P是⊙O的“達成點”.若所有滿足條件的點P構成一條長度不為0的線段,請直接寫出b的取值范圍.26.已知,反比例函數(shù)的圖象經過點M(2,a﹣1)和N(﹣2,7+2a),求這個反比例函數(shù)解析式.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據圖形的形狀沿中間的豎線折疊,兩部分可重合,里外各一個順時針旋轉8次,可得答案.【詳解】解:圖形的形狀沿中間的豎線折疊,兩部分可重合,得軸對稱.里外各一個順時針旋轉8次,得旋轉.故選:D.本題考查了幾何變換的類型,平移是沿直線移動一定距離得到新圖形,旋轉是繞某個點旋轉一定角度得到新圖形,軸對稱是沿某條直線翻折得到新圖形.觀察時要緊扣圖形變換特點,認真判斷.2、B【分析】直接利用中心對稱圖形的性質得出答案.【詳解】解:如圖所示的中心對稱圖形中,對稱中心是O1.故選:B.本題考查中心對稱圖形,解題關鍵是熟練掌握中心對稱圖形的性質.3、C【解析】分別過A、B作AD、BE垂直x軸,易證,則平行四邊形ABPQ的面積等于矩形ADEB的面積,根據反比例函數(shù)比例系數(shù)k的幾何意義分別求得矩形ADOC和矩形BEOC的面積,相加即可求得結果.【詳解】解:如圖,分別過A、B作AD、BE垂直x軸于點D、點E,則四邊形ADEB是矩形,易證,∴S矩形ABED,∵點A在反比例函數(shù)上,由反比例函數(shù)比例系數(shù)k的幾何意義可得:S矩形ADOC=|k|=3,同理可得:S矩形BEOC=7,∴S矩形ABED=S矩形ADOC+S矩形BEOC=3+7=10,故選:C.本題考查了反比例函數(shù)比例系數(shù)k的幾何意義,熟練運用比例系數(shù)k的幾何意義是解決本題的關鍵.4、A【分析】連結BD,由于點D是的中點,即,根據圓周角定理得∠ABD=∠CBD,則∠ABD=25°,再根據直徑所對的圓周角為直角得到∠ADB=90°,然后利用三角形內角和定理可計算出∠DAB的度數(shù).【詳解】解:連結BD,如圖,∵點D是的中點,即,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圓的直徑,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故選:A.本題考查了圓周角定理及其推論:在同圓或等圓中,同弧或等弧所對的圓周角相等;直徑所對的圓周角為直角.5、A【分析】根據頂點坐標公式,可得答案.【詳解】解:的頂點橫坐標是,縱坐標是,的頂點坐標是.故選A.本題考查了二次函數(shù)的性質,二次函數(shù)的頂點坐標是6、D【分析】根據題意畫出圖形,連接OA和OB,根據勾股定理的逆定理得出∠AOB=90°,再根據圓周角定理和圓內接四邊形的性質求出即可.【詳解】解:如圖所示,連接OA,OB,則OA=OB=3,∵AB=3,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度數(shù)是90°,優(yōu)弧AB的度數(shù)是360°﹣90°=270°,∴弦AB對的圓周角的度數(shù)是45°或135°,故選:D.此題主要考查圓周角的求解,解題的關鍵是根據圖形求出圓心角,再得到圓周角的度數(shù).7、C【分析】根據拋物線的性質和平移,以及一動點到兩定點距離之和最小問題的處理方法,對選項進行逐一分析即可.【詳解】①拋物線的頂點,則拋物線與直線y=3有且只有一個交點,正確,符合題意;②拋物線x軸的一個交點在2和3之間,則拋物線與x軸的另外一個交點坐標在x=0或x=﹣1之間,則點N是拋物線的頂點為最大,點P在x軸上方,點M在x軸的下放,故y1<y3<y2,故錯誤,不符合題意;③y=﹣x2+2x+2=﹣(x+1)2+3,將該拋物線先向左,再向下均平移2個單位,所得拋物線解析式為y=(x+1)2+1,正確,符合題意;④點A關于x軸的對稱點,連接A′B交x軸于點D,則點D為所求,距離最小值為BD′==,正確,符合題意;故選:C.本題考查拋物線的性質、平移和距離的最值問題,其中一動點到兩定點距離之和最小問題比較巧妙,屬綜合中檔題.8、A【分析】過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,即S=|k|.【詳解】由于點A是反比例函數(shù)圖象上一點,則S△AOB=|k|=2;

又由于函數(shù)圖象位于一、三象限,則k=4.

故選A.本題考查反比例函數(shù)系數(shù)k的幾何意義,解題的關鍵是掌握反比例函數(shù)系數(shù)k的幾何意義.9、B【解析】反比例函數(shù)圖象上的點橫坐標和縱坐標的積為k,把已知點坐標代入反比例解析式求出k的值,即可做出判斷.【詳解】解:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式為y=,則(-2,-3)在這個函數(shù)圖象上,故選:B.此題考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法是解本題的關鍵.10、C【分析】分x≥0及x<0兩種情況,利用“好點”的定義可得出關于x的一元二次方程,解之即可得出結論.【詳解】當x≥0時,,即:,

解得:,(不合題意,舍去),當x<0時,,即:,

解得:,,∴函數(shù)的圖象上的“好點”共有3個.

故選:C.本題考查了一次函數(shù)圖象上點的坐標特征及解一元二次方程,分x≥0及x<0兩種情況,找出關于x的一元二次方程是解題的關鍵.11、D【分析】根據矩形的判斷定理、相似三角形的性質、反比例函數(shù)的性質、坡度的定義及特殊的三角函數(shù)值解答即可.【詳解】對角線相等的平行四邊形是矩形,故A錯誤;相似三角形的面積比等于相似比的平方,故B錯誤;在反比例函數(shù)圖像上,在每個象限內,隨的增大而增大,故C錯誤;若一個斜坡的坡度為,則tan坡角=,該斜坡的坡角為,故D正確.故選:D本題考查的是矩形的判斷定理、相似三角形的性質、反比例函數(shù)的性質、坡度的定義及特殊的三角函數(shù)值,熟練的掌握各圖形及函數(shù)的性質是關鍵.12、A【詳解】解:∵拋物線向左平移2個單位后的頂點坐標為(﹣2,0),∴所得拋物線的解析式為.故選A.本題考查二次函數(shù)圖象與幾何變換,利用數(shù)形結合思想解題是關鍵.二、填空題(每題4分,共24分)13、25【詳解】解:∵圓錐的底面周長是4π,則4π=nπ×4180∴n=180°即圓錐側面展開圖的圓心角是180°,∴在圓錐側面展開圖中AD=2,AB=4,∠BAD=90°,∴在圓錐側面展開圖中BD=20=2∴這只螞蟻爬行的最短距離是25cm.故答案為:25.14、【解析】試題解析:∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.【點睛】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據扇形的面積公式計算圖中陰影部分的面積.本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.15、2.【分析】由角平分線的性質得出∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,由勾股定理得出,由平行線的性質得出∠OPC=∠AOP,得出∠OPC=∠BOP,證出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜邊上的中線性質即可得出答案.【詳解】∵OP平分∠AOB,PD⊥OA于點D,PE⊥OB于點E,∴∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,∴,∵CP∥OA,∴∠OPC=∠AOP,∴∠OPC=∠BOP,∴,∴,∴,在Rt△OPD中,點M是OP的中點,∴;故答案為:2.本題考查了勾股定理的應用、角平分線的性質、等腰三角形的判定、直角三角形斜邊上的中線性質、平行線的性質等知識;熟練掌握勾股定理和直角三角形斜邊上的中線性質,證明CO=CP是解題的關鍵.16、【詳解】解:設E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為17、150【分析】根據弧長公式計算.【詳解】根據扇形的面積公式可得:,解得r=24cm,再根據弧長公式,解得.故答案為:150.本題考查了弧長的計算及扇形面積的計算,要記熟公式:扇形的面積公式,弧長公式.18、1.【解析】試題分析:根據平面內兩點關于關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù),則a=4,b=-3,從而得出a+b.試題解析:根據平面內兩點關于關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù),∴a=4且b=-3,∴a+b=1.考點:關于原點對稱的點的坐標.三、解答題(共78分)19、(1)1;(2)①當0<t<4時,S=﹣t2+6t,當4≤t<6時,S=﹣4t+2,當6<t≤1時,S=t2﹣10t+2,②t=3時,△PBQ的面積最大,最大值為3【分析】(1)求出點Q的運動時間即可判斷.(2)①的三個時間段分別求出△PBQ的面積即可.②利用①中結論,求出各個時間段的面積的最大值即可判斷.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案為1.(2)①當0<t<4時,S=?(6﹣t)×2t=﹣t2+6t.當4≤t<6時,S=?(6﹣t)×8=﹣4t+2.當6<t≤1時,S=(t﹣6)?(2t﹣8)=t2﹣10t+2.②當0<t<4時,S=?(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3時,△PBQ的面積最大,最小值為3.當4≤t<6時,S=?(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4時,△PBQ的面積最大,最大值為8,當6<t≤1時,S=(t﹣6)?(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1時,△PBQ的面積最大,最大值為3,綜上所述,t=3時,△PBQ的面積最大,最大值為3.本題主要考查了二次函數(shù)在幾何圖形中的應用,涉及了分類討論的數(shù)學思想,靈活的利用二次函數(shù)的性質求三角形面積的最大值是解題的關鍵.20、(1)PC是⊙O的切線;(2)【解析】試題分析:(1)結論:PC是⊙O的切線.只要證明OC∥AD,推出∠OCP=∠D=90°,即可.(2)由OC∥AD,推出,即,解得r=,由BE∥PD,AE=AB?sin∠ABE=AB?sin∠P,由此計算即可.試題解析:解:(1)結論:PC是⊙O的切線.理由如下:連接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切線.(2)連接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=,∴PD=8,AP=10,設半徑為r.∵OC∥AD,∴,即,解得r=.∵AB是直徑,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB?sin∠ABE=AB?sin∠P=×=.點睛:本題考查了直線與圓的位置關系.解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題,屬于中考??碱}型.21、(1);(2),;(3)或.【分析】(1)在一次函數(shù)中求點A,B的坐標,然后將點C,A坐標代入二次函數(shù)解析式,求得,令y=0,解方程求點D的坐標;(2)由C點坐標確定m的取值范圍,結合拋物線的對稱性,結合函數(shù)增減性分析n的取值范圍;(3)利用頂點縱坐標公式求得函數(shù)最小值,然后分情況討論:當點在點的右側時或做測時,分別求解.【詳解】解:(1)∵直線分別與,軸交于,兩點,∴,.∵拋物線過點和點,∴.∴.令,得.解得,.∴.(2)∵點在線段上,∴.∵,∴,.∴拋物線的對稱軸是直線.在拋物線上取點,使點與點關于直線對稱.由得.∵點在拋物線上,且,∴由函數(shù)增減性,得,.(3)∵函數(shù)有最小值,∴.①當點在點的右側時,得,解得.∴,解得,.②當點在點的左側時,得,解得.∴.解得:,.綜上所述,或.本題考查二次函數(shù)的性質,屬于綜合性題目,掌握待定系數(shù)法解函數(shù)解析式,利用數(shù)形結合思想解題,注意分類討論是本題的解題關鍵.22、【分析】(1)要求的值,應該要求CD的長.證得∠A=∠BCD,然后有tanA=tan∠BCD,表示出兩個正切函數(shù)后可求得CD的長,于是可解.【詳解】解:∵∠ACB=90°,CD⊥AB于點D,

∴∠A+∠ACD=∠ACD+∠BCD=90°,

∴∠A=∠BCD,∴tanA=tan∠BCD,∴,∴,∴CD=,∴tanA=.本題考查了直角三角形三角函數(shù)的定義,利用三角函數(shù)構建方程求解有時比用相似更簡便更直接.23、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】試題分析:(1)利用待定系數(shù)法求出拋物線解析式;(2)確定出當△ACP的周長最小時,點P就是BC和對稱軸的交點,利用兩點間的距離公式計算即可;(3)作出輔助線,利用tan∠MDN=2或,建立關于點N的橫坐標的方程,求出即可.試題解析:(1)由于拋物線(a≠0)經過A(-1,0),B(2,0)兩點,因此把A、B兩點的坐標代入(a≠0),可得:;解方程組可得:,故拋物線的解析式為:,∵=,所以D的坐標為(,).(2)如圖1,設P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B兩點關于對稱軸對稱,連接CB交對稱軸于點P,則△ACP的周長最?。O直線BC為y=kx+b,則:,解得:,∴直線BC為:.當x=時,=,∴P(,);(3)存在.如圖2,過點作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,設點N(m,),∴FN=|m﹣|,F(xiàn)D=||=||,∵Rt△DNM與Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①當∠MDN=∠OBC時,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②當∠MDN=∠OCB時,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合條件的點N的坐標(,)或(,)或(,)或(,).考點:二次函數(shù)綜合題;相似三角形的判定與性質;分類討論;壓軸題.24、(1);(2)①;存在,或【分析】(1)先求得點的坐標,再代入求得b、c的值,即可得二次函數(shù)的表達式;(2)作交于點,,,,根據二次函數(shù)性質可求得.(3)求出,再根據直線與直線的夾角是的兩倍,得出線段的關系,用兩點間距離公式求出坐標.【詳解】解:如圖(1),;(2)作交于點.①設,,則:則時,最大,;(2),則,設,①若:則,∴;②若則,,作于,,與重合,關于對稱,∴本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求函數(shù)的解析式,三角形面積的巧妙求法,以及對稱點之間的關系.25、(1)①A,B;②﹣4≤m≤﹣2或﹣1≤m≤1;(2)﹣2≤b<.【分析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論