遼寧省五校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
遼寧省五校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
遼寧省五校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
遼寧省五校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
遼寧省五校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

遼寧省五校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)圖象的一個(gè)對稱中心為()A. B.C. D.2.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥03.橢圓焦距為()A. B.8C.4 D.4.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.5.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個(gè)窗花的圖案,以正六邊形各頂點(diǎn)為圓心、邊長為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點(diǎn),則此點(diǎn)取自于陰影部分的概率為()A. B.C. D.6.如圖,已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)、在橢圓上,四邊形是梯形,,且,則的面積為()A. B.C. D.7.已知命題,則為()A. B.C. D.8.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.9.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg10.某企業(yè)為節(jié)能減排,用萬元購進(jìn)一臺新設(shè)備用于生產(chǎn).第一年需運(yùn)營費(fèi)用萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加萬元,該設(shè)備每年生產(chǎn)的收入均為萬元.設(shè)該設(shè)備使用了年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.11.已知是雙曲線:的右焦點(diǎn),是坐標(biāo)原點(diǎn),過作的一條漸近線的垂線,垂足為,并交軸于點(diǎn).若,則的離心率為()A. B.C.2 D.12.在各項(xiàng)都為正數(shù)的等比數(shù)列中,首項(xiàng),前3項(xiàng)和為21,則()A.84 B.72C.33 D.189二、填空題:本題共4小題,每小題5分,共20分。13.歐陽修在《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若你隨機(jī)地向銅錢上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是_______14.已知函數(shù),則________15.在數(shù)列中,滿足,則________16.在棱長為1的正方體中,___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為2的正方體中,E,F(xiàn)分別為AB,BC上的動點(diǎn),且.(1)求證:;(2)當(dāng)時(shí),求點(diǎn)A到平面的距離.18.(12分)已知數(shù)列滿足,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前n項(xiàng)和,求.19.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點(diǎn)在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個(gè)條件中選擇兩個(gè)作已知,使得平面,并給出證明.條件①:為的中點(diǎn);條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.20.(12分)某公司有員工人,對他們進(jìn)行年齡和學(xué)歷情況調(diào)查,其結(jié)果如下:現(xiàn)從這名員工中隨機(jī)抽取一人,設(shè)“抽取的人具有本科學(xué)歷”,“抽取的人年齡在歲以下”,試求:(1);(2);(3).21.(12分)已知橢圓的左、右頂點(diǎn)坐標(biāo)分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為,求.22.(10分)已知等差數(shù)列中,,前5項(xiàng)的和為,數(shù)列滿足,(1)求數(shù)列,的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】要求函數(shù)圖象的一個(gè)對稱中心的坐標(biāo),關(guān)鍵是求函數(shù)時(shí)的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時(shí)可求出,然后對進(jìn)行取值,進(jìn)而結(jié)合選項(xiàng)即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個(gè)對稱中心為故選:D【點(diǎn)睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.2、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.3、A【解析】由題意橢圓的焦點(diǎn)在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點(diǎn)在軸上故焦距故選:A4、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)在上單調(diào)遞增不等式即,即因?yàn)?,所以所以,,解得,所以不等式的解集為故選:C.5、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】設(shè)正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D6、A【解析】設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),連接、,分析可知、、三點(diǎn)共線,設(shè)點(diǎn)、,設(shè)直線的方程為,分析可知,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出的值,可得出的值,再利用三角形的面積公式可求得結(jié)果.【詳解】設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),連接、,如下圖所示:因?yàn)闉?、的中點(diǎn),則四邊形為平行四邊形,可得且,因?yàn)?,故、、三點(diǎn)共線,設(shè)、,易知點(diǎn),,,由題意可知,,可得,若直線與軸重合,設(shè),,則,不合乎題意;設(shè)直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,得,,則,可得,故,因此,.故選:A.7、C【解析】將全稱命題否定為特稱命題即可【詳解】由題意,根據(jù)全稱命題與特稱命題的關(guān)系,可得命題,則,故選:C.8、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.9、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤故選D10、D【解析】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,則數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列,則,則該設(shè)備使用年的營運(yùn)費(fèi)用總和為,設(shè)第n年的盈利總額為,則,故年平均盈利額為,因?yàn)椋?dāng)且僅當(dāng)時(shí),等號成立,故當(dāng)時(shí),年平均盈利額取得最大值4.故選:D.【點(diǎn)睛】本題考查等差數(shù)列在實(shí)際問題中的應(yīng)用,注意根據(jù)題設(shè)條件概括出數(shù)列的類型,另外用基本不等式求最值時(shí)注意檢驗(yàn)等號成立的條件.11、A【解析】由條件建立a,b,c的關(guān)系,由此可求離心率的值.【詳解】設(shè),則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.12、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項(xiàng)的和為列方程,結(jié)合等比數(shù)列中,各項(xiàng)都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項(xiàng)為3,前三項(xiàng)的和為,,解之得或,在等比數(shù)列中,各項(xiàng)都為正數(shù),公比為正數(shù),舍去),,故選A.點(diǎn)睛:本題考查以一個(gè)特殊的等比數(shù)列為載體,通過求連續(xù)三項(xiàng)和的問題,著重考查了等比數(shù)列的通項(xiàng),等比數(shù)列的性質(zhì)和前項(xiàng)和等知識點(diǎn),屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計(jì)算公式進(jìn)行求解即可.【詳解】因?yàn)殂~錢的面積為,正方形孔的面積為,所以隨機(jī)地向銅錢上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是.故答案為:【點(diǎn)睛】本題考查了幾何概型計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.14、.【解析】將代入計(jì)算,利用和互為相反數(shù),作差可得,計(jì)算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時(shí)成立.故答案為:.15、15【解析】根據(jù)遞推公式,依次代入即可求解.【詳解】數(shù)列滿足,當(dāng)時(shí),可得,當(dāng)時(shí),可得,當(dāng)時(shí),可得,故答案為:15.16、1【解析】根據(jù)向量的加法及向量數(shù)量積的運(yùn)算性質(zhì)求解.【詳解】如圖,在正方體中,,故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標(biāo)系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數(shù)量積求出平面的法向量,結(jié)合求點(diǎn)到面距離的向量法即可得出結(jié)果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,,,,所以,,所以,故,所以;【小問2詳解】當(dāng)時(shí),,,,,則,,,設(shè)是平面的法向量,則由,解得,取,得,設(shè)點(diǎn)A到平面的距離為,則,所以點(diǎn)A到平面的距離為.18、(1)(2)【解析】(1)由題意可得數(shù)列是以2為公差的等差數(shù)列,再由可求出,從而可求出通項(xiàng)公式,(2)由(1)可得,然后利用分組求和可求出【小問1詳解】因?yàn)閿?shù)列滿足,所以數(shù)列是以2為公差的等差數(shù)列,因?yàn)?,所以,得,所以【小?詳解】由(1)可得,所以19、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】連結(jié),,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設(shè),連結(jié),,又,分別是,的中點(diǎn),∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設(shè),連結(jié).因?yàn)槠矫?,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因?yàn)?,,兩兩垂直,如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,則,,,,,,所以,.由(1)知:平面的一個(gè)法向量為.設(shè)平面的法向量為,則,令,則.設(shè)平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.20、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和對立事件的概率公式可求得;(3)利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由表格中的數(shù)據(jù)可得.【小問2詳解】解:由表格中的數(shù)據(jù)可得,所以.【小問3詳解】解:可知即歲以下且??茖W(xué)歷,所以.21、(1);(2).【解析】(1)由橢圓頂點(diǎn)可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點(diǎn)差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論