上海市浦東新區(qū)四校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末考試試題含解析_第1頁
上海市浦東新區(qū)四校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末考試試題含解析_第2頁
上海市浦東新區(qū)四校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末考試試題含解析_第3頁
上海市浦東新區(qū)四校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末考試試題含解析_第4頁
上海市浦東新區(qū)四校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

上海市浦東新區(qū)四校2025-2026學(xué)年數(shù)學(xué)高二第一學(xué)期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.2.曲線在點處的切線方程為()A. B.C. D.3.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點,依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.4.如圖,某圓錐的軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.5.若,則下列等式一定成立的是()A. B.C. D.6.中國古代數(shù)學(xué)名著九章算術(shù)中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之栗五斗羊主曰:“我羊食半馬”馬主曰:“我馬食半?!苯裼斨瑔柛鞒鰩缀??此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗的主人要求賠償5斗栗羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比率償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還栗a升,b升,c升,1斗為10升,則下列判斷正確的是A.a,b,c依次成公比為2的等比數(shù)列,且B.a,b,c依次成公比為2的等比數(shù)列,且C.a,b,c依次成公比為的等比數(shù)列,且D.a,b,c依次成公比為的等比數(shù)列,且7.已知等差數(shù)列,且,則()A.3 B.5C.7 D.98.①命題設(shè)“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個基底,則構(gòu)成空間的另一基底;其中正確判斷的個數(shù)是()A.1 B.2C.3 D.49.設(shè)是兩個非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.11.如圖,函數(shù)的圖象在P點處的切線方程是,若點的橫坐標(biāo)是5,則()A. B.1C.2 D.012.已知函數(shù)(且,)的一個極值點為2,則的最小值為()A. B.C. D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是等差數(shù)列,,公差,為其前n項和,滿足,則當(dāng)取得最大值時,______14.已知函數(shù)有兩個極值點,則實數(shù)a的取值范圍為________.15.i為虛數(shù)單位,復(fù)數(shù)______16.直線過點,且原點到直線l的距離為,則直線方程是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值18.(12分)如圖,已知三棱錐的側(cè)棱,,兩兩垂直,且,,是的中點.(1)求異面直線與所成角的余弦值;(2)求點到面的距離.(3)求二面角的平面角的正切值.19.(12分)如圖,在正方體中,分別為,的中點(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值20.(12分)已知拋物線y2=8x.(1)求出該拋物線的頂點、焦點、準(zhǔn)線、對稱軸、變量x的范圍;(2)以坐標(biāo)原點O為頂點,作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點F是△OAB的重心,求△OAB的周長21.(12分)已知拋物線上一點到焦點的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點,且滿足(為坐標(biāo)原點),證明:直線與軸的交點為定點.22.(10分)已知直線l過點,與兩坐標(biāo)軸的正半軸分別交于A,B兩點,O為坐標(biāo)原點(1)若的面積為,求直線l的方程;(2)求的面積的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)直角三角形的兩條直角邊邊長分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當(dāng)且僅當(dāng)時,等號成立.故這個直角三角形周長的最大值為故選:C2、A【解析】利用切點和斜率求得切線方程.【詳解】由,有曲線在點處的切線方程為,整理為故選:A3、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個正方體的棱長為,其體積為,上面第二個正方體的棱長為,其體積為,上面第三個正方體的棱長為,其體積為,所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,其前項和為,當(dāng),,所以所有這些正方體的體積之和將趨近于.故選:D.4、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.5、D【解析】利用復(fù)數(shù)除法運算和復(fù)數(shù)相等可用表示出,進而得到之間關(guān)系.【詳解】,,,則.故選:D.6、D【解析】由條件知,,依次成公比為的等比數(shù)列,三者之和為50升,根據(jù)等比數(shù)列的前n項和,即故答案為D.7、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B8、B【解析】利用逆否命題、含有邏輯聯(lián)結(jié)詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因為為空間的一個基底,,故,矛盾,故不共面,所以構(gòu)成空間的另一基底,④正確.所以正確的判斷是個.故選:B9、B【解析】因為時,夾角為鈍角或平角;而當(dāng)夾角為鈍角時,成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點:1向量的數(shù)量積;2充分必要條件10、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導(dǎo)公式要記熟11、C【解析】函數(shù)的圖象在點P處的切線方程是,所以,在P處的導(dǎo)數(shù)值為切線的斜率,2,故選C考點:本題主要考查導(dǎo)數(shù)的幾何意義點評:簡單題,切線的斜率等于函數(shù)在切點的導(dǎo)函數(shù)值12、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對求導(dǎo)得:,因函數(shù)的一個極值點為2,則,此時,,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個極值點,則有,又,,于是得,當(dāng)且僅當(dāng),即時取“=”,所以的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、9或10【解析】等差數(shù)列通項公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因為,公差,所以或10時,取得最大值故答案為:9或1014、【解析】由題可得有兩個不同正根,利用分離參數(shù)法得到.令,,只需和有兩個交點,利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域為,,要使函數(shù)有兩個極值點,只需有兩個不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個極值點,只需和有兩個交點,∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時,;當(dāng)時,;作出和的圖像如圖,所以,即,即實數(shù)a的取值范圍為.故答案為:15、【解析】利用復(fù)數(shù)的除法運算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡求解即可.【詳解】故答案為:.16、【解析】直線斜率不存在不滿足題意,即設(shè)直線的點斜式方程,再利用點到直線的距離公式,求出的值,即可求出直線方程.【詳解】①當(dāng)直線斜率不存在時,顯然不滿足題意.②當(dāng)直線斜率存在時,設(shè)直線為.原點到直線l的距離為,即直線方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,取;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴18、(1);(2);(3).【解析】(1)首先以為原點,、、分別為、、軸建立空間直角坐標(biāo)系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量為,先求,再求二面角的正切值.【詳解】(1)以為原點,、、分別為、、軸建立空間直角坐標(biāo)系.則有、、、.,,所以異面直線與所成角的余弦為(2)設(shè)平面的法向量為,則知:;知取,又,點到面的距離所以點到面的距離為.(3)(2)中已求平面的法向量,設(shè)平面的法向量為∵;∴取..設(shè)二面角的平面角為,則.【點睛】本題考查空間直角坐標(biāo)系求解空間角和點到平面的距離,重點考查計算能力,屬于中檔題型.19、(1)證明見解析;(2).【解析】(1)由正方體性質(zhì)易得,根據(jù)線面平行的判定可得面、面,再由面面平行的判定證明結(jié)論;(2)建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,確定相關(guān)點的坐標(biāo),進而求兩個半平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值【小問1詳解】在正方體中,且,且,且,則四邊形為平行四邊形,即有,因為面,面,則平面,同理平面,又,面,則平面平面E.小問2詳解】以點為坐標(biāo)原點,,,所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則,,所以,,設(shè)平面的法向量為,則,令,則由平面,則是平面的一個法向量設(shè)平面與平面夾角,,因此平面與平面所成銳二面角的余弦值為20、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(3,m),代入y2=8x即可得到△OAB的周長【詳解】(1)拋物線y2=8x的頂點、焦點、準(zhǔn)線、對稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0.(2)如圖所示.由|OA|=|OB|可知AB⊥x軸,垂足為點M,又焦點F是△OAB的重心,則|OF|=|OM|.因為F(2,0),所以|OM|=|OF|=3.所以M(3,0).故設(shè)A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周長為2+4.【點睛】本題考查了拋物線簡單性質(zhì)的應(yīng)用,解題關(guān)鍵利用好三角形重心的性質(zhì),屬于中檔題.21、(1);(2)證明見解析.【解析】(1)利用拋物線點,n)到焦點的距離等于到x軸的距離求出,從而得到拋物線的標(biāo)準(zhǔn)方程(2)聯(lián)立直線與拋物線方程,通過韋達(dá)定理求出直線方程,然后由,即可求解【小問1詳解】由題意可得,故拋物線方程為;【小問2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論