版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
馬鞍山市重點(diǎn)中學(xué)2025年高二上數(shù)學(xué)期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則函數(shù)在點(diǎn)處的切線方程為()A. B.C. D.2.若橢圓的一個(gè)焦點(diǎn)為,則的值為()A.5 B.3C.4 D.23.下列導(dǎo)數(shù)運(yùn)算正確的是()A. B.C. D.4.若則()A.?2 B.?1C.1 D.25.瑞士數(shù)學(xué)家歐拉1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,其歐拉線方程為,則頂點(diǎn)的坐標(biāo)可以是()A. B.C. D.6.已知實(shí)數(shù)滿足方程,則的最大值為()A.3 B.2C. D.7.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個(gè)問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級(jí)遞減石分這些俸糧,問,每個(gè)人各分得多少俸糧?在這個(gè)問題中,正三品分得俸糧是()A.石 B.石C.石 D.石8.已知直線l和兩個(gè)不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.910.若命題為“,”,則為()A., B.,C., D.,11.已知是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.12.我們知道∶用平行于圓錐母線的平面(不過頂點(diǎn))截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的圓錐曲線的一部分,則該圓錐曲線的焦點(diǎn)到其準(zhǔn)線的距離等于()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,已知向量,則在軸上的投影向量為________.14.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:糧倉開倉收糧,有人送來1524石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為_______石15.六面體的所有棱長都為2,底面ABCD是正方形,AC與BD的交點(diǎn)是O,若,則___________.16.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點(diǎn)為,橢圓的離心率為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)點(diǎn)T為橢圓C上的點(diǎn),若點(diǎn)T在第一象限,且與x軸垂直,過T作兩條斜率互為相反數(shù)的直線分別與橢圓C交于點(diǎn)M,N,探究直線的斜率是否為定值?若為定值,請求之;若不為定值,請說明理由18.(12分)已知直線l過點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C的方程19.(12分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,(1)求,;(2)已知,,試比較,的大小20.(12分)已知函數(shù),.(1)若函數(shù)與在x=1處的切線平行,求函數(shù)在處的切線方程;(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)已知圓.(1)若不過原點(diǎn)的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.22.(10分)已知直線l:,圓C:.(1)當(dāng)時(shí),試判斷直線l與圓C的位置關(guān)系,并說明理由;(2)若直線l被圓C截得的弦長恰好為,求k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】依據(jù)導(dǎo)數(shù)幾何意義去求函數(shù)在點(diǎn)處的切線方程即可解決.【詳解】則,又則函數(shù)在點(diǎn)處的切線方程為,即故選:C2、B【解析】由題意判斷橢圓焦點(diǎn)在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點(diǎn)在軸上,則,從而,解得:.故選:B.3、B【解析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【詳解】選項(xiàng)A,,錯(cuò)誤;選項(xiàng)B,,正確;選項(xiàng)C,,錯(cuò)誤;選項(xiàng)D,,錯(cuò)誤故選:B4、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.5、C【解析】設(shè)出點(diǎn)C坐標(biāo),求出的重心并代入歐拉線方程,驗(yàn)證并排除部分選項(xiàng),余下選項(xiàng)再由外心、垂心驗(yàn)證判斷作答.【詳解】設(shè)頂點(diǎn)的坐標(biāo)為,則的重心坐標(biāo)為,依題意,,整理得:,對(duì)于A,當(dāng)時(shí),,不滿足題意,排除A;對(duì)于D,當(dāng)時(shí),,不滿足題意,排除D;對(duì)于B,當(dāng)時(shí),,對(duì)于C,當(dāng)時(shí),,直線AB的斜率,線段AB中點(diǎn),線段AB中垂線方程:,即,由解得:,于是得的外心,若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),該點(diǎn)與點(diǎn)M確定直線斜率為,顯然,即點(diǎn)M不在線段BC的中垂線上,不滿足題意,排除B;若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),線段BC中垂線方程為:,即,由解得,即點(diǎn)為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時(shí)有,即的垂心在直線上,選項(xiàng)C滿足題意.故選:C【點(diǎn)睛】結(jié)論點(diǎn)睛:的三頂點(diǎn),則的重心為.6、D【解析】將方程化為,由圓的幾何性質(zhì)可得答案.【詳解】將方程變形為,則圓心坐標(biāo)為,半徑,則圓上的點(diǎn)的橫坐標(biāo)的范圍為:則x的最大值是故選:D.7、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項(xiàng)和求,進(jìn)而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.8、D【解析】根據(jù)直線、平面的位置關(guān)系,應(yīng)用定義法判斷兩個(gè)條件之間的充分、必要性.【詳解】當(dāng),時(shí),直線l可與平行、相交,故不一定成立,即充分性不成立;當(dāng),時(shí),直線l可在平面內(nèi),故不一定成立,即必要性不成立.故選:D.9、B【解析】首先地推公式變形,得,,求得數(shù)列的通項(xiàng)公式后,再解不等式.【詳解】因?yàn)?,兩邊取倒?shù),得,整理為:,,所以數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,,,因?yàn)?,即,得,解得:?所以的最大值是7.故選:B10、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B11、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長軸,雙曲線實(shí)軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時(shí)取等號(hào),的最小值為6,故選:C【點(diǎn)睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力12、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可得C的坐標(biāo),設(shè)拋物線的方程,將C的坐標(biāo)代入求出拋物線的方程,進(jìn)而可得焦點(diǎn)到其準(zhǔn)線的距離【詳解】設(shè)AB,CD的交點(diǎn)為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因?yàn)镋是母線PB的中點(diǎn),所以,由題意建立適當(dāng)?shù)淖鴺?biāo)系,以BP為y軸以O(shè)E為x軸,E為坐標(biāo)原點(diǎn),如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點(diǎn)坐標(biāo)代入可得,所以,所以拋物線的方程為∶,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,所以焦點(diǎn)到其準(zhǔn)線的距離為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)向量坐標(biāo)意義及投影的定義得解.【詳解】因?yàn)橄蛄?,所以在軸上的投影向量為.故答案為:14、168石【解析】由題意,得這批米內(nèi)夾谷約為石考點(diǎn):用樣本估計(jì)總體15、【解析】結(jié)合空間向量運(yùn)算求得.【詳解】,.所以.故答案為:16、.【解析】利用空間向量夾角公式進(jìn)行求解即可.【詳解】取CD的中點(diǎn)O,以O(shè)為原點(diǎn),以CD所在直線為x軸,以底面內(nèi)過點(diǎn)O且與CD垂直的直線為y軸,以過點(diǎn)O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)直線的斜率為定值,且定值為.【解析】(1)根據(jù)橢圓的離心率及所過的點(diǎn)求出橢圓參數(shù)a、b,即可得橢圓標(biāo)準(zhǔn)方程.(2)由題設(shè)得,法一:設(shè)為,聯(lián)立橢圓方程應(yīng)用韋達(dá)定理求M坐標(biāo),根據(jù)與斜率關(guān)系求N的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率;法二:設(shè)為,,聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于參數(shù)m、k的方程,即可判斷是否為定值.【小問1詳解】由題意,則,又,所以橢圓C方程為,代入有,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由題設(shè)易知:,法一:設(shè)直線為,由,消去y,整理得,因?yàn)榉匠逃幸粋€(gè)根為,所以M的橫坐標(biāo)為,縱坐標(biāo),故M為,用代替k,得N為,所以,故直線的斜率為定值法二:由已知直線的斜率存在,可設(shè)直線為,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,則直線過點(diǎn)T,不合題意,所以.即,故直線的斜率為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第二問,設(shè)直線方程并聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理及得到關(guān)于直線斜率的方M、N程,或求出的坐標(biāo),應(yīng)用兩點(diǎn)式求斜率.18、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l斜率,由點(diǎn)斜式化簡即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長,圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因?yàn)橹本€l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1719、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差,等比數(shù)列的公比,由已知列式計(jì)算得解.(2)由(1)的結(jié)論,用等比數(shù)列前n項(xiàng)和公式求出,用裂項(xiàng)相消法求出,再比較大小作答.【小問1詳解】設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,依題意,,整理得:,解得,所以,.【小問2詳解】由(1)知,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,則,,,則,用數(shù)學(xué)歸納法證明,,①當(dāng)時(shí),左邊,右邊,左邊>右邊,即原不等式成立,②假設(shè)當(dāng)時(shí),不等式成立,即,則,即時(shí),原不等式成立,綜合①②知,,成立,因此,,即,所以.20、(1);(2).【解析】(1)求出函數(shù)的導(dǎo)數(shù),利用切線平行求出a,即可求出切線方程;(2)先把已知條件轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)求出的最小值,即可求出實(shí)數(shù)a的取值范圍.【詳解】(1),故,而,故,故,解得:,故,故的切線方程是:,即;(2)當(dāng)時(shí),恒成立等價(jià)于,令,.則,令,解得:;令,解得:;所以在上單減,在上單增,所以,所以.即實(shí)數(shù)a的取值范圍為.21、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問1詳解】因?yàn)橹本€不過原點(diǎn),設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年翻身實(shí)驗(yàn)學(xué)校(西校區(qū))誠聘初中地理、初中道法和高中歷史教師備考題庫及一套答案詳解
- 2025年杭州師范大學(xué)附屬醫(yī)院公開招聘高層次、緊缺專業(yè)人才36人備考題庫及完整答案詳解一套
- 2025年杭州市蕭山區(qū)機(jī)關(guān)事業(yè)單位第三次公開招聘編外人員35人備考題庫及參考答案詳解一套
- 佳木斯大學(xué)2026年公開招聘工作人員191人備考題庫完整參考答案詳解
- 2025年招聘事業(yè)發(fā)展部工作人員備考題庫及答案詳解1套
- 高考卷一理綜試卷及答案
- 初中音樂課標(biāo)試卷及答案
- 甘孜德格馬尼干戈光伏項(xiàng)目報(bào)告表
- 2025四川新南城鄉(xiāng)建設(shè)集團(tuán)有限公司招聘一線工作人員3人筆試歷年典型考點(diǎn)題庫附帶答案詳解
- 2025四川九州電子科技股份有限公司招聘銷售內(nèi)勤崗1人筆試歷年備考題庫附帶答案詳解
- 血透失衡綜合征的護(hù)理課件
- 2025年服飾時(shí)尚行業(yè)數(shù)字化轉(zhuǎn)型研究報(bào)告
- 物流搬運(yùn)工合同范本
- 2025年心肺復(fù)蘇指南課件
- 2025年湖北省宜昌市新質(zhì)生產(chǎn)力發(fā)展研判:聚焦“3+2”主導(dǎo)產(chǎn)業(yè)打造長江經(jīng)濟(jì)帶新質(zhì)生產(chǎn)力發(fā)展示范區(qū)圖
- 2025 小學(xué)二年級(jí)數(shù)學(xué)上冊解決問題審題方法課件
- 老年患者術(shù)后加速康復(fù)外科(ERAS)實(shí)施方案
- 2024-2025學(xué)年廣州市越秀區(qū)八年級(jí)上學(xué)期期末歷史試卷(含答案)
- 2025年餐飲與管理考試題及答案
- 2025事業(yè)單位考試公共基礎(chǔ)知識(shí)測試題及答案
- GB 4943.1-2022音視頻、信息技術(shù)和通信技術(shù)設(shè)備第1部分:安全要求
評(píng)論
0/150
提交評(píng)論