版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆北京市西城區(qū)第三十九中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列,,則公差d等于()A. B.C.3 D.-32.直線的傾斜角是A. B.C. D.3.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.4.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.5.已知f(x)是定義在R上的偶函數(shù),當(dāng)時,,且f(-1)=0,則不等式的解集是()A. B.C. D.6.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.7.天文學(xué)家卡西尼在研究土星及其衛(wèi)星的運行規(guī)律時發(fā)現(xiàn):同一平面內(nèi)到兩個定點的距離之積為常數(shù)的點的軌跡是卡西尼卵形線.在平面直角坐標(biāo)系中,設(shè)定點為,,,點O為坐標(biāo)原點,動點滿足(且為常數(shù)),化簡得曲線E:.當(dāng),時,關(guān)于曲線E有下列四個命題:①曲線E既是軸對稱圖形,又是中心對稱圖形;②的最大值為;③的最小值為;④面積的最大值為.其中,正確命題的個數(shù)為()A.1個 B.2個C.3個 D.4個8.已知拋物線的焦點為F,過F作斜率為2的直線l與拋物線交于A,B兩點,若弦的中點到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.9.方程化簡的結(jié)果是()A. B.C. D.10.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.11.已知圓:,是直線的一點,過點作圓的切線,切點為,,則的最小值為()A. B.C. D.12.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種二、填空題:本題共4小題,每小題5分,共20分。13.在一平面直角坐標(biāo)系中,已知,現(xiàn)沿x軸將坐標(biāo)平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.14.若點為圓上的一個動點,則點到直線距離的最大值為________15.設(shè)正項等比數(shù)列的公比為,前項和為,若,則_______________.16.已知對任意正實數(shù)m,n,p,q,有如下結(jié)論成立:若,則有成立,現(xiàn)已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線.(1)當(dāng)為何值時,直線與圓相切;(2)當(dāng)直線與圓相交于、兩點,且時,求直線的方程.18.(12分)已知橢圓的一個焦點與拋物線的焦點重合,橢圓上的動點到焦點的最大距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過作一條不與坐標(biāo)軸垂直的直線交橢圓于兩點,弦的中垂線交軸于,當(dāng)變化時,是否為定值?若是,定值為多少?19.(12分)已知直線和,設(shè)a為實數(shù),分別根據(jù)下列條件求a的值:(1)(2)20.(12分)如圖,已知正方體的棱長為,,分別是棱與的中點.(1)求以,,,為頂點的四面體的體積;(2)求異面直線和所成角的大小.21.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面22.(10分)在平面直角坐標(biāo)系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標(biāo);若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,利用公式,即可求解.【詳解】由題意,等差數(shù)列,,可得等差數(shù)列的公差.故選:B.2、D【解析】由方程得到斜率,然后可得其傾斜角.【詳解】因為直線的斜率為所以其傾斜角為故選:D3、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A4、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.5、D【解析】根據(jù)題意可知,當(dāng)時,,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進而解得答案.【詳解】由題意,當(dāng)時,,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時,.故選:D.6、A【解析】由焦距為可得,又,進而可得,最后根據(jù)焦點在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因為雙曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.7、D【解析】①:根據(jù)軸對稱圖形、中心對稱圖形的方程特征進行判斷即可;②:結(jié)合兩點間距離公式、曲線方程特征進行判斷即可;③:根據(jù)卡西尼卵形線的定義,結(jié)合基本不等式進行判斷即可;④:根據(jù)方程特征,結(jié)合三角形面積公式進行判斷即可.【詳解】當(dāng),時,.①:因為以代方程不變,以代方程不變,同時代,以代方程不變,所以曲線E既是軸對稱圖形,又是中心對稱圖形,因此本命題正確;②:由,所以有,所以,當(dāng)時成立,因此本命題正確;③:因為,所以,當(dāng)且僅當(dāng)時,取等號,因此本命題正確;④:,因為,所以,的面積為,因此本命題正確,故選:D【點睛】關(guān)鍵點睛:利用方程特征進行求解判斷是解題的關(guān)鍵.8、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因為直線l的方程為,即,由消去y,得,設(shè),則,又因為弦的中點到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.9、D【解析】由方程的幾何意義得到是橢圓,進而得到焦點和長軸長求解.【詳解】∵方程,表示平面內(nèi)到定點、的距離的和是常數(shù)的點的軌跡,∴它的軌跡是以為焦點,長軸,焦距的橢圓;∴;∴橢圓的方程是,即為化簡的結(jié)果故選:D10、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.11、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A12、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】平面直角坐標(biāo)系中,沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標(biāo)系中,已知,現(xiàn)沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:14、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計算作答.【詳解】圓的圓心,半徑,點C到直線的距離,所以圓C上點P到直線l距離的最大值為.故答案為:715、【解析】由可知公比,所以直接利用等比數(shù)列前項和公式化簡,即可求出【詳解】解:因為,所以,所以,所以,化簡得,因為等比數(shù)列的各項為正數(shù),所以,所以,故答案為:【點睛】此題考查等比數(shù)列前項和公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題16、【解析】根據(jù)正弦定理,結(jié)合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)將圓的方程表示為標(biāo)準(zhǔn)方程,確定圓心坐標(biāo)與半徑,利用圓心到直線的距離可求得實數(shù)的值;(2)求出圓心到直線的距離,利用、、三者滿足勾股定理可求得的方程,解出的值,即可得出直線的方程.【詳解】將圓C的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為,半徑為.(1)若直線與圓相切,則有,解得;(2)圓心到直線的距離為,由勾股定理可得,可得,整理得,解得或,故所求直線方程為或.【點睛】方法點睛:圓的弦長的常用求法(1)幾何法:求圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)方法:運用根與系數(shù)的關(guān)系及弦長公式.18、(1)(2)是,【解析】(1)由拋物線方程求出其焦點坐標(biāo),結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計算,由此完成證明.【小問1詳解】拋物線的交點坐標(biāo)為(1,0),,又,又,∴,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點坐標(biāo)為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1)a=4或a=-2(2)a=【解析】(1)根據(jù),由a(a-2)-2×4=0求解;(2)根據(jù),由4a=-2(a-2)求解.【小問1詳解】解:因為,所以a(a-2)-2×4=0,解得a=4或a=-2所以當(dāng)時,a=4或a=-2;【小問2詳解】因為,所以4a=-2(a-2),解得a=檢驗:此時,,成立所以當(dāng)時,a=.20、(1)(2)【解析】(1)由題意可知該四面體為以為底面,以為高的四面體,可得四面體體積;(2)連接,,可得即為異面直線和所成的角的平面角,根據(jù)余弦定理可得角的大小.【小問1詳解】解:連接,,,以,,,為頂點的四面體即為三棱錐,底面的面積,高,則其體積;【小問2詳解】解:連接,,,則即為異面直線和所成的角的平面角,在中,,,,則,故,即和所成的角的的大小為.21、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.22、(1);(2)存在,.【解析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電氣控制系統(tǒng)設(shè)計中的數(shù)字化轉(zhuǎn)型
- 2026年橋梁健康監(jiān)測的性價比分析
- 餐飲企業(yè)供應(yīng)鏈管理及風(fēng)險控制
- 2026年土木工程中的有限元分析
- 2026年橋梁耐久性工程師的職業(yè)發(fā)展
- 市政建設(shè)工程環(huán)境影響評估報告
- 2026年建筑內(nèi)部電氣線路的防火設(shè)計
- (2025年)湖南選調(diào)生考試真題及答案
- 互聯(lián)網(wǎng)技術(shù)崗位技能培訓(xùn)方案
- 針灸推拿科知識培訓(xùn)課件
- 個人投資收款收據(jù)
- 太陽能路燈可行性研究報告
- 華為在歐洲市場分析報告
- 中國工藝美術(shù)館招聘筆試試卷2021
- 申論范文寶典
- DB32T 3695-2019房屋面積測算技術(shù)規(guī)程
- 貴州省納雍縣水東鄉(xiāng)水東鉬鎳礦采礦權(quán)評估報告
- GB 8270-2014食品安全國家標(biāo)準(zhǔn)食品添加劑甜菊糖苷
- 易制毒化學(xué)品日常管理有關(guān)問題權(quán)威解釋和答疑
- 湖北省高等教育自學(xué)考試
- 企業(yè)三級安全生產(chǎn)標(biāo)準(zhǔn)化評定表(新版)
評論
0/150
提交評論