上海工商職業(yè)技術(shù)學(xué)院《數(shù)據(jù)描述與可視化》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
上海工商職業(yè)技術(shù)學(xué)院《數(shù)據(jù)描述與可視化》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
上海工商職業(yè)技術(shù)學(xué)院《數(shù)據(jù)描述與可視化》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
上海工商職業(yè)技術(shù)學(xué)院《數(shù)據(jù)描述與可視化》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
上海工商職業(yè)技術(shù)學(xué)院《數(shù)據(jù)描述與可視化》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁上海工商職業(yè)技術(shù)學(xué)院《數(shù)據(jù)描述與可視化》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在數(shù)據(jù)分析中,建立回歸模型用于預(yù)測是常見的任務(wù)。假設(shè)我們要根據(jù)房屋的面積、位置和房齡等因素來預(yù)測房價,以下哪種回歸模型可能在這種情況下表現(xiàn)較好?()A.線性回歸B.邏輯回歸C.多項式回歸D.嶺回歸2、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的算法和技術(shù)有很多,其中神經(jīng)網(wǎng)絡(luò)是一種常用的算法。以下關(guān)于神經(jīng)網(wǎng)絡(luò)的描述中,錯誤的是?()A.神經(jīng)網(wǎng)絡(luò)可以用于分類、回歸和聚類等問題B.神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括輸入層、隱藏層和輸出層C.神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程需要大量的數(shù)據(jù)和計算資源D.神經(jīng)網(wǎng)絡(luò)的結(jié)果是確定性的,不會受到數(shù)據(jù)噪聲和異常值的影響3、在數(shù)據(jù)分析中,選擇合適的統(tǒng)計量來描述數(shù)據(jù)的集中趨勢和離散程度是很重要的。假設(shè)你有一組員工的工資數(shù)據(jù),以下關(guān)于統(tǒng)計量的選擇,哪一項是最合適的?()A.用中位數(shù)描述集中趨勢,用方差描述離散程度B.用均值描述集中趨勢,用標(biāo)準(zhǔn)差描述離散程度C.用眾數(shù)描述集中趨勢,用極差描述離散程度D.隨機選擇統(tǒng)計量,不考慮數(shù)據(jù)的特點4、數(shù)據(jù)分析中的時間序列分析常用于預(yù)測未來趨勢。假設(shè)要預(yù)測未來一個月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢性。以下哪種時間序列預(yù)測模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測?()A.移動平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型5、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達(dá)數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準(zhǔn)確性和可靠性D.數(shù)據(jù)可視化可以增強數(shù)據(jù)的說服力和影響力6、對于數(shù)據(jù)分析中的因果推斷,假設(shè)要確定一個因素是否真正導(dǎo)致了某種結(jié)果。以下哪種方法或思路在進(jìn)行因果分析時可能是關(guān)鍵的?()A.隨機對照試驗B.觀察性研究結(jié)合工具變量C.反事實推理D.僅根據(jù)相關(guān)性得出因果結(jié)論7、在數(shù)據(jù)分析中,抽樣是一種常用的方法。以下關(guān)于抽樣的描述,錯誤的是:()A.簡單隨機抽樣保證了每個樣本被抽取的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣的效率較高,但精度可能較低D.抽樣不會引入偏差,能完全反映總體的特征8、在處理時間序列數(shù)據(jù)時,除了考慮趨勢和季節(jié)性,還需要考慮數(shù)據(jù)的隨機性。假設(shè)要使用一種方法來平滑時間序列數(shù)據(jù),同時保留數(shù)據(jù)的主要特征,以下哪種方法可能是合適的?()A.簡單移動平均B.加權(quán)移動平均C.指數(shù)加權(quán)移動平均D.以上方法都可以9、在數(shù)據(jù)庫設(shè)計中,以下哪個原則有助于提高數(shù)據(jù)庫的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引10、數(shù)據(jù)分析中,數(shù)據(jù)安全策略的制定應(yīng)考慮多方面因素。以下關(guān)于數(shù)據(jù)安全策略制定的說法中,錯誤的是?()A.數(shù)據(jù)安全策略的制定應(yīng)包括數(shù)據(jù)的加密、備份、訪問控制和審計等方面B.數(shù)據(jù)安全策略的制定應(yīng)根據(jù)數(shù)據(jù)的重要性和敏感性來確定不同的安全級別C.數(shù)據(jù)安全策略的制定應(yīng)定期進(jìn)行評估和調(diào)整,以適應(yīng)不斷變化的安全環(huán)境D.數(shù)據(jù)安全策略的制定只需要考慮企業(yè)內(nèi)部的安全需求,不需要考慮外部的安全威脅11、假設(shè)要分析某網(wǎng)站不同頁面的訪問量分布情況,以下哪種圖表能夠直觀地展示訪問量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是12、當(dāng)分析數(shù)據(jù)的分布特征時,以下哪個圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖13、在數(shù)據(jù)倉庫和數(shù)據(jù)集市的建設(shè)中,需要考慮數(shù)據(jù)的整合和存儲。假設(shè)要為一個企業(yè)構(gòu)建數(shù)據(jù)存儲架構(gòu),以下關(guān)于數(shù)據(jù)倉庫和數(shù)據(jù)集市選擇的描述,正確的是:()A.只建立數(shù)據(jù)倉庫,不考慮數(shù)據(jù)集市,認(rèn)為數(shù)據(jù)倉庫能夠滿足所有分析需求B.盲目建立數(shù)據(jù)集市,不與數(shù)據(jù)倉庫進(jìn)行有效的集成和協(xié)調(diào)C.根據(jù)企業(yè)的規(guī)模、業(yè)務(wù)需求和數(shù)據(jù)特點,合理規(guī)劃數(shù)據(jù)倉庫和數(shù)據(jù)集市的架構(gòu),確保數(shù)據(jù)的一致性和可用性,并明確它們在數(shù)據(jù)分析中的角色和作用D.不考慮數(shù)據(jù)的更新和維護(hù),只關(guān)注初始的建設(shè)14、在數(shù)據(jù)庫中,若要對數(shù)據(jù)進(jìn)行分組統(tǒng)計,以下哪個關(guān)鍵字通常會被使用?()A.GROUPBYB.ORDERBYC.WHERED.HAVING15、對于一個不平衡的數(shù)據(jù)集(例如,某一類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別),以下哪種方法可以提高模型對少數(shù)類別的識別能力?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋數(shù)據(jù)可視化中的數(shù)據(jù)鉆取和上卷,說明如何通過這兩種操作深入探索和概括數(shù)據(jù),以獲取更詳細(xì)或更宏觀的信息。2、(本題5分)在進(jìn)行分類模型評估時,除了準(zhǔn)確率等常見指標(biāo),還有哪些評估指標(biāo)可以使用?請說明這些指標(biāo)的含義和應(yīng)用場景。3、(本題5分)解釋支持向量機算法的原理和特點,說明其在分類和回歸問題中的應(yīng)用,并討論核函數(shù)的選擇對模型性能的影響。三、論述題(本大題共5個小題,共25分)1、(本題5分)金融行業(yè)擁有豐富的交易數(shù)據(jù)和客戶信息。分析如何運用數(shù)據(jù)分析技術(shù),像風(fēng)險評估模型、投資組合優(yōu)化等,識別金融風(fēng)險、發(fā)現(xiàn)投資機會,提升金融機構(gòu)的風(fēng)險管理能力和盈利能力,同時探討在數(shù)據(jù)質(zhì)量、模型準(zhǔn)確性和監(jiān)管要求方面所面臨的挑戰(zhàn)及解決方案。2、(本題5分)隨著物聯(lián)網(wǎng)技術(shù)的普及,智能家居設(shè)備產(chǎn)生了大量的數(shù)據(jù)。詳細(xì)論述如何利用數(shù)據(jù)分析,例如能耗分析、用戶行為模式識別等,優(yōu)化家居設(shè)備的控制策略、提高能源利用效率,為用戶提供更舒適便捷的生活體驗,同時分析數(shù)據(jù)安全和設(shè)備兼容性等方面的挑戰(zhàn)及解決辦法。3、(本題5分)探討在電商平臺的商品評價數(shù)據(jù)中,如何運用文本挖掘技術(shù)提取關(guān)鍵信息,改進(jìn)商品質(zhì)量和服務(wù)。4、(本題5分)在醫(yī)療健康領(lǐng)域,可穿戴設(shè)備收集了大量的個人健康數(shù)據(jù)。以某健康管理公司為例,探討如何運用數(shù)據(jù)分析來提供個性化的健康建議、疾病預(yù)防、運動指導(dǎo),以及如何確保數(shù)據(jù)的準(zhǔn)確性和可靠性。5、(本題5分)電信行業(yè)擁有大量的用戶通信數(shù)據(jù),數(shù)據(jù)分析可以改善服務(wù)質(zhì)量和客戶體驗。請詳細(xì)闡述如何利用數(shù)據(jù)分析來進(jìn)行網(wǎng)絡(luò)優(yōu)化、客戶流失預(yù)測和增值服務(wù)推薦,研究數(shù)據(jù)分析在應(yīng)對電信行業(yè)快速發(fā)展和技術(shù)更新中的作用和局限性。四、案例分析題(本大題共3個小題,共30分)1、(本題10分)某在線票務(wù)平臺收集了不同演出、賽事的票務(wù)銷售數(shù)據(jù)、觀眾座位選擇、退票情況等。分析如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論