山東省煙臺市重點名校2026屆數學高二上期末綜合測試試題含解析_第1頁
山東省煙臺市重點名校2026屆數學高二上期末綜合測試試題含解析_第2頁
山東省煙臺市重點名校2026屆數學高二上期末綜合測試試題含解析_第3頁
山東省煙臺市重點名校2026屆數學高二上期末綜合測試試題含解析_第4頁
山東省煙臺市重點名校2026屆數學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省煙臺市重點名校2026屆數學高二上期末綜合測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓2.已知圓C的圓心在直線上,且與直線相切于點,則圓C方程為()A. B.C. D.3.已知函數的導數為,且滿足,則()A. B.C. D.4.設a,b,c非零實數,且,則()A. B.C. D.5.在復平面內,復數對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.7.已知數列的通項公式為,則“”是“數列為單調遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知空間三點,,在一條直線上,則實數的值是()A.2 B.4C.-4 D.-29.圓與圓的位置關系為()A.內切 B.相交C.外切 D.相離10.已知橢圓與圓在第二象限的交點是點,是橢圓的左焦點,為坐標原點,到直線的距離是,則橢圓的離心率是()A. B.C. D.11.已知,則()A. B.C. D.12.經過點的直線的傾斜角為,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數在x=1處的切線與直線y=kx平行,則實數k=___________.14.如圖,在五面體中,//,,,四邊形為平行四邊形,平面,,則直線到平面距離為_________15.已知數列滿足,,的前項和為,則______.16.曲線在處的切線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,過右焦點作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設和的面積比為,求實數的取值范圍.18.(12分)一個盒中裝有編號分別為、、、的四個形狀大小完全相同的小球.(1)從盒中任取兩球,列出所有的基本事件,并求取出的球的編號之和大于的概率;(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,列出所有的基本事件,并求的概率.19.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大?。唬?)若cosA=,求的值.20.(12分)已知橢圓:,是坐標原點,,分別為橢圓的左、右焦點,點在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設直線:與橢圓交于,兩點,且直線,,的斜率之和為0(其中為坐標原點)①求證:直線經過定點,并求出定點坐標:②求面積的最大值21.(12分)在平面直角坐標系中,為坐標原點,曲線上點都在軸及其右側,且曲線上的任一點到軸的距離比它到圓的圓心的距離小1(1)求曲線的方程;(2)已知過點的直線交曲線于點,若,求面積22.(10分)已知數列的前項和為,且滿足,,成等比數列,.(1)求數列的通項公式;(2)令,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:2、C【解析】設出圓心坐標,根據垂直直線的斜率關系求得圓心坐標,結合兩點距離公式得半徑,即可得圓方程【詳解】設圓心為,則圓心與點的連線與直線l垂直,即,則點,所以圓心為,半徑,所以方程為,故選:C3、C【解析】首先求出,再令即可求解.【詳解】由,則,令,則,所以.故選:C【點睛】本題主要考查了基本初等函數的導數以及導數的基本運算法則,屬于基礎題.4、C【解析】對于A、B、D:取特殊值否定結論;對于C:利用作差法證明.【詳解】對于A:取符合已知條件,但是不成立.故A錯誤;對于B:取符合已知條件,但是,所以不成立.故B錯誤;對于C:因為,所以.故C正確;對于D:取符合已知條件,但是,所以不成立.故D錯誤;故選:C.5、D【解析】根據復數在復平面內的坐標表示可得答案.【詳解】解:由題意得:在復平面上對應的點為,該點在第四象限.故選:D6、B【解析】建立空間直角坐標系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標系如圖:則,,,設直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B7、A【解析】根據充分條件和必要條件的定義,結合數列的單調性判斷【詳解】根據題意,已知數列的通項公式為,若數列為單調遞增數列,則有(),所以,因為,所以,所以當時,數列為單調遞增數列,而當數列為單調遞增數列時,不一定成立,所以“”是“數列為單調遞增數列”的充分而不必要條件,故選:A8、C【解析】根據三點在一條直線上,利用向量共線原理,解出實數的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎題.9、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標準方程為:,所以圓心坐標為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C10、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因為圓,可得,過點作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側同除,可得,解得或,又因為,所以橢圓的離心率為.故選:B【點睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結合直角三角形的勾股定理,列出關于的方程是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.11、C【解析】取中間值,化成同底利用單調性比較可得.【詳解】,,,故,故選:C12、A【解析】由題意,得,解得;故選A考點:直線的傾斜角與斜率二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由題可求函數的導數,再利用導數的幾何意義即求.【詳解】∵,∴,,又函數在x=1處的切線與直線y=kx平行,∴.故答案為:2.14、【解析】利用等價轉化的思想轉化為點到面的距離,作,利用線面垂直的判定定理證明平面,然后計算使用等面積法,可得結果.【詳解】作如圖由//,平面,平面所以//平面所以直線到平面距離等價于點到平面距離又平面,平面所以,又,則平面,,所以平面平面,所以又平面,所以平面所以點到平面距離為由,所以又,所以在中,又故答案為:【點睛】本題考查線面垂直的綜合應用以及等面積法求高,重點在于使用等價轉換的思想,考驗理解能力,分析問題的能力,屬中檔題.15、【解析】分析出當為正奇數時,,可求得的值,再分析出當為正偶數時,,可求得的值,進而可求得的值.【詳解】由題知,當為正奇數時,,于是,,,,,所以.又因為當為正偶數時,,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點睛】關鍵點點睛:本題的解題關鍵在于分析出當為正奇數時,,以及當為正偶數時,,找出規(guī)律,結合并項求和法求出以及的值.16、【解析】求得的導數,可得切線的斜率和切點,由斜截式方程可得切線方程【詳解】解:的導數為,可得曲線在處的切線斜率為,切點為,即有切線方程為故答案為【點睛】本題考查導數的運用:求切線方程,考查導數的幾何意義,直線方程的運用,考查方程思想,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)已知焦點弦三角形的周長,以及離心率求橢圓方程,待定系數直接求解即可.(2)第一步設點設直線,第二步聯立方程韋達定理,第三步條件轉化,利用三角形等面積法,列方程,第四步利用韋達定理進行轉化,計算即可.【小問1詳解】因為的周長為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設,與橢圓C方程聯立,消去得,由韋達定理得,.令,②則,可得當時,當時,所以,又解得③由①②③得,解得.所以實數的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設,與橢圓C方程聯立,消去得,由韋達定理得,.所以因為,所以解得②由①②解得.所以實數的取值范圍是.18、(1)基本事件答案見解析,概率為;(2)基本事件答案見解析,概率為.【解析】(1)利用列舉法列舉出所有的基本事件,并確定事件“取出的球的編號之和大于”所包含的基本事件數,利用古典概型的概率公式可求得結果;(2)利用列舉法列舉出所有的基本事件,并確定事件“”所包含的基本事件數,利用古典概型的概率公式可求得結果.【詳解】(1)記“從盒中任取兩球,取出球的編號之和大于”為事件,樣本點表示“從盒中取出、號球”,且和表示相同的樣本點(以此類推),則樣本空間為,則,根據古典概型可知,從盒中任取兩球,取出球的編號之和大于的概率為;(2)記“”為事件,樣本點表示第一次取出號球,將球放回,從盒中取出號球(以此類推),則樣本空間,則,所以,故事件“”的概率為.19、(1)(2)【解析】(1)利用正弦定理、余弦定理化簡已知條件,求得,由此求得.(2)先求得,結合兩角差的正弦公式求得.【小問1詳解】,,即,,,.【小問2詳解】由,可得,.20、(1);(2)①證明見解析,;②.【解析】(1)根據橢圓的定義以及角平分線的性質可得,,結合點在橢圓上,以及即可求出的值,進而可得橢圓的方程.(2)①設,,聯立直線與橢圓方程,求得,,利用斜率之和等于得出關于的方程,解得即可得所過的定點,②由弦長公式求出,點到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接,所以,所以又在橢圓上則,解得:,,所以橢圓的方程為:;(2)①證明:設,,聯立,整理可得:,所以,可得,,,設直線,,的斜率為,,,因為直線,,的斜率之和為0,所以,即所以,由,所以,所以直線恒過定點;②由①可得:,原點到直線的距離,所以,因為,當且僅當時,即,即時取等號,所以,即面積的最大值為1【點睛】解決圓錐曲線中的范圍或最值問題時,若題目的條件和結論能體現出明確的函數關系,則可先建立目標函數,再求這個函數的最值.在利用代數法解決最值與范圍問題時常從以下幾個方面考慮:21、(1)(2)【解析】(1)由題意直接列或根據拋物線的定義求軌跡方程(2)待定系數法設直線方程,聯立直線與拋物線方程,根據拋物線的定義,利用韋達定理解出直線方程,再求面積【小問1詳解】解法1:配方法可得圓的方程為,即圓的圓心為,設的坐標為,由已知可得,化簡得,曲線的方程為解法2:配方可得圓的方程為,即圓的圓心為,由題意可得上任意一點到直線的距離等于該點到圓心的距離,由拋物線的定義可得知,點的軌跡為以點為焦點的拋物線,所以曲線的方程為【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論