2025年上海嘉定區(qū)安亭高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁(yè)
2025年上海嘉定區(qū)安亭高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁(yè)
2025年上海嘉定區(qū)安亭高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁(yè)
2025年上海嘉定區(qū)安亭高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁(yè)
2025年上海嘉定區(qū)安亭高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年上海嘉定區(qū)安亭高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)坐標(biāo)是A. B.C. D.2.南北朝時(shí)期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個(gè)平行平面之間的幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,現(xiàn)有一個(gè)圓柱體和一個(gè)長(zhǎng)方體,它們的底面面積相等,高也相等,若長(zhǎng)方體的底面周長(zhǎng)為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高()A.有最小值 B.有最大值C.有最小值 D.有最大值3.下面四個(gè)說(shuō)法中,正確說(shuō)法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.44.已知不等式只有一個(gè)整數(shù)解,則m的取值范圍是()A. B.C. D.5.已知x>0、y>0,且1,若恒成立,則實(shí)數(shù)m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)6.已知F是雙曲線C:的一個(gè)焦點(diǎn),點(diǎn)P在C的漸近線上,O是坐標(biāo)原點(diǎn),,則的面積為()A.1 B.C. D.7.若,則下列等式一定成立的是()A. B.C. D.8.某人忘了電腦屏保密碼的后兩位,但記得最后一位是1,3,5,7,9中的一個(gè)數(shù)字,倒數(shù)第二位是G,O,D中的一個(gè)字母,若他嘗試輸入密碼,則一次輸入就解開屏保的概率是()A. B.C. D.9.已知橢圓與雙曲線有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則當(dāng)取最大值時(shí)的值為()A. B.C. D.10.已知等差數(shù)列的前n項(xiàng)和為,且,,則為()A. B.C. D.11.如圖是正方體的平面展開圖,在這個(gè)正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個(gè)結(jié)論中,正確結(jié)論的序號(hào)是A.①②③ B.②④C.③④ D.②③④12.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽(yù)為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長(zhǎng)的正方形拼成長(zhǎng)方形,然后在每個(gè)正方形中畫一個(gè)圓心角為90°的圓弧,這些圓弧所連起來(lái)的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長(zhǎng)為1,1,2,3,5,8的部分,如圖建立平面直角坐標(biāo)系(規(guī)定小方格的邊長(zhǎng)為1),則接下來(lái)的一段圓弧所在圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三個(gè)數(shù)2,,6成等比數(shù)列,則實(shí)數(shù)______14.命題的否定是____________________.15.直線與圓相交于兩點(diǎn)M,N,若滿足,則________16.已知AB為圓O:的直徑,點(diǎn)P為橢圓上一動(dòng)點(diǎn),則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和18.(12分)已知圓:,定點(diǎn),Q為圓上的一動(dòng)點(diǎn),點(diǎn)P在半徑CQ上,且,設(shè)點(diǎn)P的軌跡為曲線E.(1)求曲線E的方程;(2)過(guò)點(diǎn)的直線交曲線E于A,B兩點(diǎn),過(guò)點(diǎn)H與AB垂直的直線與x軸交于點(diǎn)N,當(dāng)取最大值時(shí),求直線AB的方程.19.(12分)已知數(shù)列的前項(xiàng)和為,已知,且當(dāng),時(shí),(1)證明數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前項(xiàng)和20.(12分)已知橢圓:,是坐標(biāo)原點(diǎn),,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,過(guò)作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設(shè)直線:與橢圓交于,兩點(diǎn),且直線,,的斜率之和為0(其中為坐標(biāo)原點(diǎn))①求證:直線經(jīng)過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo):②求面積的最大值21.(12分)已知圓與直線(1)若,直線與圓相交與,求弦長(zhǎng)(2)若直線與圓無(wú)公共點(diǎn)求的取值范圍22.(10分)已知等差數(shù)列的首項(xiàng)為2,公差為8.在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,,,,是從中抽取的若干項(xiàng)按原來(lái)的順序排列組成的一個(gè)等比數(shù)列,,,令,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)為可知,拋物線即的焦點(diǎn)坐標(biāo)為,故選D.考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).2、C【解析】由條件可得長(zhǎng)方體的體積為,設(shè)長(zhǎng)方體的底面相鄰兩邊分別為,根據(jù)基本不等式,可求出底面面積的最大值,進(jìn)而求出高的最小值,得出結(jié)論.【詳解】依題意長(zhǎng)方體的體積為,設(shè)圓柱的高為長(zhǎng)方體的底面相鄰兩邊分別為,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,.故選:C.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查基本不等式求最值,要認(rèn)真審題,理解題意,屬于基礎(chǔ)題.3、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說(shuō)法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.4、B【解析】依據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個(gè)整數(shù)解,可化為只有一個(gè)整數(shù)解令,則當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,則當(dāng)時(shí),取最大值,當(dāng)時(shí),恒成立,的草圖如下:,,則若只有一個(gè)整數(shù)解,則,即故不等式只有一個(gè)整數(shù)解,則m的取值范圍是故選:B5、B【解析】應(yīng)用基本不等式“1”的代換求的最小值,注意等號(hào)成立條件,再根據(jù)題設(shè)不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設(shè),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴要使恒成立,只需,故,∴.故選:B.6、B【解析】根據(jù)給定條件求出,再利用余弦定理求出即可計(jì)算作答.【詳解】雙曲線C:中,,其漸近線,它與x軸的夾角為,即,在中,,由余弦定理得:,即,整理得:,解得,所以面積為.故選:B7、D【解析】利用復(fù)數(shù)除法運(yùn)算和復(fù)數(shù)相等可用表示出,進(jìn)而得到之間關(guān)系.【詳解】,,,則.故選:D.8、C【解析】應(yīng)用分步計(jì)數(shù)法求后兩位的可能組合數(shù),即可求一次輸入就解開屏保的概率.【詳解】由題設(shè),后兩位可能情況有,∴一次輸入就解開屏保的概率是.故選:C.9、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時(shí)的的值.【詳解】設(shè)為第一象限的交點(diǎn),、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,此時(shí)故選:D10、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.11、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點(diǎn)的分布逐項(xiàng)判斷可得正確的選項(xiàng).【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯(cuò)誤,④正確.連接,則為等邊三角形,而,故或其補(bǔ)角為與所成的角,因?yàn)?,故與所成的角為,故③正確.綜上,正確命題的序號(hào)為:③④.故選:C.【點(diǎn)睛】本題考查正方體的平面展開圖,注意展開圖中的點(diǎn)與正方體中的頂點(diǎn)的對(duì)應(yīng)關(guān)系,本題屬于容易題.12、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個(gè)圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進(jìn)而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過(guò)點(diǎn),因?yàn)槊恳欢螆A弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點(diǎn)的連線平行于軸,因?yàn)橄乱欢螆A弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得,從而可求出的值【詳解】因?yàn)槿齻€(gè)數(shù)2,,6成等比數(shù)列,所以,解得故答案為:14、##【解析】根據(jù)全稱量詞命題的否定的知識(shí)寫出正確答案.【詳解】全稱量詞命題的否定是存在量詞命題,要注意否定結(jié)論,所以命題否定是:故答案為:15、【解析】由點(diǎn)到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長(zhǎng)公式可得,然后可解.【詳解】因?yàn)?,所以,所以,圓心到直線的距離因?yàn)椋?,所以故答案為?6、2【解析】方法一:通過(guò)對(duì)稱性取特殊位置,設(shè)出P的坐標(biāo),利用向量的數(shù)量積轉(zhuǎn)化求解最小值即可方法二:利用向量的數(shù)量積,轉(zhuǎn)化為向量的和與差的平方,通過(guò)圓的特殊性,轉(zhuǎn)化求解即可【詳解】解:方法一:依據(jù)對(duì)稱性,不妨設(shè)直徑AB在x軸上,x,,,從而故答案為2方法二:,而,則答案2故答案為2【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、橢圓方程的幾何性質(zhì)考查轉(zhuǎn)化思想以及計(jì)算能力三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由等比數(shù)列的前項(xiàng)和公式,等比數(shù)列的基本量運(yùn)算列方程組解得和公比后可得通項(xiàng)公式;(2)用錯(cuò)位相減法求得和【小問1詳解】設(shè)數(shù)列的公比為q,由,,得,解之得所以;【小問2詳解】,又,得,,兩式作差,得,所以18、(1)(2)或【解析】(1)結(jié)合已知條件可得到點(diǎn)P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結(jié)合已知條件設(shè)出直線的方程,然后聯(lián)立橢圓方程,利用弦長(zhǎng)公式求出,再設(shè)出直線NH的方程,求出N點(diǎn)坐標(biāo),進(jìn)而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設(shè)點(diǎn)的坐標(biāo)為,∵,∴點(diǎn)P在線段QF垂直平分線上,∴,又∵,∴∴點(diǎn)P在以C,F(xiàn)為焦點(diǎn)的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設(shè)直線AB方程為,,由,解得,,解得,由韋達(dá)定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設(shè)則∴當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,有最大值,此時(shí)滿足,故,所以直線AB的方程為:,即或.19、(1)證明見解析;(2).【解析】(1)消去,只保留數(shù)列的遞推關(guān)系,根據(jù)題干提示來(lái)證明,注意證明首項(xiàng)不是零;(2)利用裂項(xiàng)求和來(lái)解決.【小問1詳解】證明:由題意,當(dāng)時(shí),即,,整理,得,,,,數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列【小問2詳解】解:由(1)知,,則,,,,,各項(xiàng)相加,可得,當(dāng)n=1成立,故20、(1);(2)①證明見解析,;②.【解析】(1)根據(jù)橢圓的定義以及角平分線的性質(zhì)可得,,結(jié)合點(diǎn)在橢圓上,以及即可求出的值,進(jìn)而可得橢圓的方程.(2)①設(shè),,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關(guān)于的方程,解得即可得所過(guò)的定點(diǎn),②由弦長(zhǎng)公式求出,點(diǎn)到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接,所以,所以又在橢圓上則,解得:,,所以橢圓的方程為:;(2)①證明:設(shè),,聯(lián)立,整理可得:,所以,可得,,,設(shè)直線,,的斜率為,,,因?yàn)橹本€,,的斜率之和為0,所以,即所以,由,所以,所以直線恒過(guò)定點(diǎn);②由①可得:,原點(diǎn)到直線的距離,所以,因?yàn)椋?dāng)且僅當(dāng)時(shí),即,即時(shí)取等號(hào),所以,即面積的最大值為1【點(diǎn)睛】解決圓錐曲線中的范圍或最值問題時(shí),若題目的條件和結(jié)論能體現(xiàn)出明確的函數(shù)關(guān)系,則可先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時(shí)常從以下幾個(gè)方面考慮:21、(1);(2)或.【解析】(1)求出圓心到直線的距離,再由垂徑定理求弦長(zhǎng);(2)由圓心到直線的距離大于半徑列式求解的范圍【詳解】解:(1)圓,圓心為,半徑,圓心到直線的距離

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論