2026屆山東省臨沂市平邑縣、沂水縣數(shù)學高二第一學期期末質量檢測試題含解析_第1頁
2026屆山東省臨沂市平邑縣、沂水縣數(shù)學高二第一學期期末質量檢測試題含解析_第2頁
2026屆山東省臨沂市平邑縣、沂水縣數(shù)學高二第一學期期末質量檢測試題含解析_第3頁
2026屆山東省臨沂市平邑縣、沂水縣數(shù)學高二第一學期期末質量檢測試題含解析_第4頁
2026屆山東省臨沂市平邑縣、沂水縣數(shù)學高二第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆山東省臨沂市平邑縣、沂水縣數(shù)學高二第一學期期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.宋元時期數(shù)學名著《算學啟蒙》中有關于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.22.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教士偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學家馬西森指出此法符合1801年由高斯得出的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關于整除的問題,現(xiàn)有這樣一個整除問題:將2至2021這2020個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構成數(shù)列,則此數(shù)列的項數(shù)為()A. B.C. D.3.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.命題“,”否定是()A., B.,C., D.,5.若直線與直線垂直,則a的值為()A.2 B.1C. D.6.若,則()A.0 B.1C. D.27.已知實數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.208.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.9.雙曲線的漸近線方程為A. B.C. D.10.已知,為正實數(shù),且,則的最小值為()A. B.C. D.111.已知函數(shù)的導函數(shù)滿足,則()A. B.C.3 D.412.等比數(shù)列的公比,中有連續(xù)四項在集合中,則等于()A. B.C D.二、填空題:本題共4小題,每小題5分,共20分。13.向量,,若,且,則的值為______.14.(建三江)函數(shù)在處取得極小值,則=___15.已知為平面的一個法向量,為直線的方向向量.若,則__________.16.將某校全體高一年級學生期末數(shù)學成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學生進行問卷調查,采用按成績分層隨機抽樣,則應抽取成績不少于60分的學生人數(shù)為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若滿足數(shù)列為遞增數(shù)列,求數(shù)列前項和18.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點且(1)求橢圓C的離心率;(2)求直線l方程19.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調區(qū)間;(2)若,討論函數(shù)的零點個數(shù)20.(12分)設橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.21.(12分)已知函數(shù)(Ⅰ)求的單調區(qū)間和最值;(Ⅱ)設,證明:當時,22.(10分)已知拋物線的焦點為F,為拋物線C上的點,且.(1)求拋物線C的方程;(2)若直線與拋物線C相交于A,B兩點,求弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結構計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當n=1時,a=3,b=2,滿足進行循環(huán)的條件,當n=2時,a,b=4,滿足進行循環(huán)的條件,當n=3時,a,b=8,滿足進行循環(huán)的條件,當n=4時,a,b=16,不滿足進行循環(huán)的條件,故輸出的n值為4,故選:B【點睛】本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答2、C【解析】由題設且,應用不等式求的范圍,即可確定項數(shù).【詳解】由題設,且,所以,可得且.所以此數(shù)列的項數(shù)為.故選:C3、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.4、D【解析】根據(jù)含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.5、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A6、D【解析】由復數(shù)的乘方運算求,再求模即可.【詳解】由題設,,故2.故選:D7、A【解析】根據(jù)約束條件作出可行域,再將目標函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉化為,令則,作出直線并平移使它經(jīng)過可行域點,經(jīng)過時,,解得,所以此時取得最大值,即有最大值,即故選:A.8、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.9、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.10、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當且僅當時等號成立,故的最小值為1,故選:D.11、C【解析】先對函數(shù)求導,再由,可求出的關系式,然后求【詳解】由,得,因為,所以,所以,故選:C12、C【解析】經(jīng)分析可得,等比數(shù)列各項的絕對值單調遞增,將五個數(shù)按絕對值的大小排列,計算相鄰兩項的比值,根據(jù)等比數(shù)列的定義即可求解.【詳解】因為等比數(shù)列中有連續(xù)四項在集合中,所以中既有正數(shù)項也有負數(shù)項,所以公比,因為,所以,且負數(shù)項為相隔兩項,所以等比數(shù)列各項的絕對值單調遞增,按絕對值排列可得,因,,,,所以是中連續(xù)四項,所以,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)可求出,再根據(jù)向量垂直即可求出,即可得出答案.【詳解】因為,,所以,解得,又因為,所以,解得,所以.故答案為:.14、【解析】由,令,解得或,且時,;時,;時,,所以當時,函數(shù)取得極小值考點:導數(shù)在函數(shù)中的應用;極值的條件15、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:16、48【解析】根據(jù)頻率分布直方圖,求出成績不少于分的頻率,然后根據(jù)頻數(shù)頻率總數(shù),即可求出結果【詳解】根據(jù)頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學生進行問卷調查,利用樣本估計總體的思想,則應抽取成績不少于60分的學生人數(shù)為人故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)利用等差數(shù)列通項公式,可構造方程組求得,由此可得通項公式;(2)由(1)可得,利用分組求和法,結合等差等比求和公式可得結果.【小問1詳解】設等差數(shù)列的公差為,則,解得:或,當時,;當時,.綜上,或【小問2詳解】由(1)當數(shù)列為遞增數(shù)列,則,設,.18、(1)(2)或【解析】(1)將橢圓化為標準方程,求得,進而求得離心率;(2)設直線,,,與橢圓聯(lián)立,借助韋達定理及弦長公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設直線,,聯(lián)立,化簡得,則,解得,,由弦長公式知,,解得,故直線或19、(1)單調遞減區(qū)間為,單調遞增區(qū)間為和;(2)當時,無零點;當時,有1個零點;當時,有2個零點.【解析】(1)求導,令導數(shù)大于零求增區(qū)間,令導數(shù)小于零求減區(qū)間;(2)求導數(shù),分、、a>2討論函數(shù)f(x)單調性和零點即可.【小問1詳解】當時,,易知定義域為R,,當時,;當或時,故的單調遞減區(qū)間為,單調遞增區(qū)間為和;【小問2詳解】當時,x正0負0正單增極大值單減極小值單增當時,恒成立,∴;當時,①當時,,∴無零點;②當時,,∴有1個零點;③當時,,又當時,單調遞增,,∴有2個零點;綜上所述:當時,無零點;當時,有1個零點;當時,有2個零點【點睛】結論點睛:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用20、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標準方程;(2)本小題先設過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點到左右兩個焦點、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標準方程為;(2)設點、的坐標為,,因為直線過點,所以可設直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因為,所以四邊形是平行四邊形,設平面四邊形的面積為,則,設,則(),所以,因為,所以,,所以四邊形面積的最大值為6.【點睛】本題考查橢圓的標準方程,相交弦等問題,是偏難題.21、(Ⅰ)單調遞減區(qū)間為,單調遞增區(qū)間為;最小值為,無最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導函數(shù)的正負即可確定單調區(qū)間,由單調性可得最值點;(Ⅱ)構造函數(shù),利用導數(shù)可確定單調性,結合的正負可確定的零點的范圍,進而得到結論.【詳解】(Ⅰ)由題意得:定義域為,,當時,;當時,;的單調遞減區(qū)間為,單調遞增區(qū)間為的最小值為,無最大值(Ⅱ)設,則,令得:當時,;當時,,在上單調遞增;在上單調遞減由(Ⅰ)知:,可得:,,可得:,即又,當時,,即當時,【點睛】思路點睛:本題考查導數(shù)在研究函數(shù)中的應用,涉及到函數(shù)單調性和最值的求解、利用導數(shù)證明不等式等知識;利用導數(shù)證明不等式的關鍵是能夠通過移項構造的方式,構造出新的函數(shù),通過的單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論