人工智能英文術(shù)語詞匯自測題及答案_第1頁
人工智能英文術(shù)語詞匯自測題及答案_第2頁
人工智能英文術(shù)語詞匯自測題及答案_第3頁
人工智能英文術(shù)語詞匯自測題及答案_第4頁
人工智能英文術(shù)語詞匯自測題及答案_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人工智能英文術(shù)語詞匯自測題及答案一、單選題(每題2分,共10題)說明:下列每題提供四個選項,請選擇最符合題意的英文術(shù)語。1.WhatisthetermfortheprocessofanAIsystemlearningfromdatawithoutexplicitprogramming?A.SupervisedLearningB.UnsupervisedLearningC.ReinforcementLearningD.DeepLearning2.Whichofthefollowingisthecorrecttermforatypeofneuralnetworkwithmultiplehiddenlayers?A.ConvolutionalNeuralNetwork(CNN)B.RecurrentNeuralNetwork(RNN)C.DeepNeuralNetwork(DNN)D.GenerativeAdversarialNetwork(GAN)3.Whatdoes"FederatedLearning"referto?A.TrainingamodelonasingledatasetB.CollaborativelytrainingmodelsacrossmultipledeviceswithoutsharingrawdataC.Usingpre-trainedmodelsforinferenceD.Ensemblingmultiplemodelsforbetterperformance4.Whichtermdescribesthephenomenonwhereamodelperformswellontrainingdatabutpoorlyonunseendata?A.OverfittingB.UnderfittingC.BiasD.Variance5.Whatisthetermfortheprocessofconvertingnon-structureddataintoastructuredformatforAIanalysis?A.DataPreprocessingB.FeatureEngineeringC.DataNormalizationD.DataAugmentation二、多選題(每題3分,共5題)說明:下列每題提供四個選項,請選擇所有符合題意的英文術(shù)語。6.Whichofthefollowingarecommontechniquesforreducingoverfittinginmachinelearningmodels?A.DropoutB.L1/L2RegularizationC.EarlyStoppingD.BatchNormalization7.WhattermsdescribemethodsforevaluatingtheperformanceofanAImodel?A.AccuracyB.PrecisionC.RecallD.F1-Score8.Whichofthefollowingaretypesofneuralnetworkscommonlyusedincomputervisiontasks?A.ConvolutionalNeuralNetworks(CNNs)B.RecurrentNeuralNetworks(RNNs)C.GenerativeAdversarialNetworks(GANs)D.TransformerNetworks9.WhattermsrelatetotheethicalconsiderationsinAIdevelopment?A.AlgorithmicBiasB.FairnessC.PrivacyD.Transparency10.WhichofthefollowingareexamplesofgenerativemodelsinAI?A.AutoencodersB.VariationalAutoencoders(VAEs)C.GenerativeAdversarialNetworks(GANs)D.DecisionTrees三、填空題(每題4分,共5題)說明:請根據(jù)題意填寫正確的英文術(shù)語。11.Theprocessoftrainingamodelonlabeleddatawherethecorrectoutputisknowniscalled________Learning.12.Atechniqueusedtosplitadatasetintomultiplepartsforcross-validationiscalled________Validation.13.Thetermforamodelthatcanhandlesequentialdataandretainmemoryofpreviousinputsis________.14.Theprocessofadjustingtherangeofdatavaluestoensureuniformityiscalled_________.15.TheethicalprinciplethatAIsystemsshouldbeinterpretableandtheirdecisionsexplainableisknownasthe________Principle.四、簡答題(每題5分,共3題)說明:請簡要解釋下列術(shù)語的含義。16.Explain"TransferLearning."17.Whatis"EnsembleLearning,"andwhyisituseful?18.Describe"DataAugmentation"inthecontextofAI.五、匹配題(每題6分,共2題)說明:將下列術(shù)語與其對應(yīng)的解釋進行匹配。19.-A.Atypeofneuralnetworkthatlearnshierarchicalfeaturesfromdata.-B.Theprocessoffine-tuningapre-trainedmodelforaspecifictask.-C.Amodelthatconsistsofmultiplelayersofneurons.-D.Atechniquewheremodelsaretrainedinparallelandtheirpredictionsarecombined.Matchthefollowingterms:1.ConvolutionalNeuralNetwork(CNN)2.Fine-tuning3.DeepNeuralNetwork(DNN)4.EnsembleLearning20.-A.Amethodtoimprovemodelgeneralizationbygeneratingsyntheticdata.-B.Theprocessofreducingmodelcomplexitytopreventoverfitting.-C.Atechniquewhereamodellearnsfromitsownpredictions.-D.Thepracticeoftrainingamodelondatafrommultiplesources.Matchthefollowingterms:1.DataAugmentation2.Regularization3.Self-supervisedLearning4.Multi-modalLearning答案及解析一、單選題答案1.B.UnsupervisedLearning解析:UnsupervisedLearning(無監(jiān)督學習)是指模型從無標簽數(shù)據(jù)中學習模式,無需人工提供正確答案。2.C.DeepNeuralNetwork(DNN)解析:DNN是指具有多個隱藏層的神經(jīng)網(wǎng)絡(luò),層數(shù)越多,模型越“深”。3.B.Collaborativelytrainingmodelsacrossmultipledeviceswithoutsharingrawdata解析:FederatedLearning(聯(lián)邦學習)允許在不共享原始數(shù)據(jù)的情況下,通過設(shè)備間的模型協(xié)同訓練實現(xiàn)數(shù)據(jù)隱私保護。4.A.Overfitting解析:Overfitting(過擬合)是指模型對訓練數(shù)據(jù)過度擬合,導致泛化能力下降。5.A.DataPreprocessing解析:DataPreprocessing(數(shù)據(jù)預處理)是將非結(jié)構(gòu)化數(shù)據(jù)轉(zhuǎn)化為可分析的格式的過程。二、多選題答案6.A,B,C解析:Dropout、L1/L2Regularization和EarlyStopping都是減少過擬合的有效方法。7.A,B,C,D解析:Accuracy(準確率)、Precision(精確率)、Recall(召回率)和F1-Score(F1分數(shù))都是常見的模型評估指標。8.A,C,D解析:CNNs(卷積神經(jīng)網(wǎng)絡(luò))、GANs(生成對抗網(wǎng)絡(luò))和TransformerNetworks(Transformer網(wǎng)絡(luò))在計算機視覺中應(yīng)用廣泛。9.A,B,C,D解析:AlgorithmicBias(算法偏見)、Fairness(公平性)、Privacy(隱私)和Transparency(透明度)都是AI倫理的核心議題。10.A,B,C解析:Autoencoders、VAEs和GANs都屬于生成模型,能夠生成新的數(shù)據(jù)樣本。三、填空題答案11.Supervised解析:SupervisedLearning(監(jiān)督學習)依賴標簽數(shù)據(jù)進行訓練。12.K-Fold解析:K-FoldValidation(K折驗證)是常見的交叉驗證方法。13.RecurrentNeuralNetwork(RNN)解析:RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))適用于處理序列數(shù)據(jù)。14.Normalization解析:Normalization(歸一化)調(diào)整數(shù)據(jù)范圍以消除量綱影響。15.Explainability解析:ExplainabilityPrinciple(可解釋性原則)強調(diào)AI決策的透明度。四、簡答題答案16.TransferLearning(遷移學習)解析:遷移學習是指將一個模型在某個任務(wù)上學習到的知識應(yīng)用于另一個相關(guān)任

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論