山東煙臺(tái)二模數(shù)學(xué)試卷及答案_第1頁(yè)
山東煙臺(tái)二模數(shù)學(xué)試卷及答案_第2頁(yè)
山東煙臺(tái)二模數(shù)學(xué)試卷及答案_第3頁(yè)
山東煙臺(tái)二模數(shù)學(xué)試卷及答案_第4頁(yè)
山東煙臺(tái)二模數(shù)學(xué)試卷及答案_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東煙臺(tái)二模數(shù)學(xué)試卷及答案一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合\(A=\{x|x^23x+2=0\}\),\(B=\{x|x^2ax+a1=0\}\),若\(A\capB=B\),則實(shí)數(shù)\(a\)的值為()A.\(2\)B.\(3\)C.\(2\)或\(3\)D.\(1\)或\(2\)或\(3\)答案:C解析:先求解集合\(A\),由\(x^23x+2=0\),即\((x1)(x2)=0\),得\(x=1\)或\(x=2\),所以\(A=\{1,2\}\)。對(duì)于集合\(B\),\(x^2ax+a1=0\)可化為\((x1)[x(a1)]=0\),則\(x=1\)或\(x=a1\)。因?yàn)閈(A\capB=B\),所以\(B\subseteqA\),當(dāng)\(a1=1\)時(shí),\(a=2\);當(dāng)\(a1=2\)時(shí),\(a=3\),所以\(a=2\)或\(3\)。2.若復(fù)數(shù)\(z=\frac{1+i}{1i}+m(1i)\)(\(i\)為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)\(m\)的值為()A.\(0\)B.\(1\)C.\(1\)D.\(2\)答案:A解析:先化簡(jiǎn)\(z\),\(\frac{1+i}{1i}=\frac{(1+i)^2}{(1i)(1+i)}=\frac{1+2i+i^2}{2}=i\),則\(z=i+mmi=(m)+(1m)i\)。因?yàn)閈(z\)為純虛數(shù),所以實(shí)部\(m=0\)。3.已知向量\(\overrightarrow{a}=(1,2)\),\(\overrightarrow=(x,4)\),若\(\overrightarrow{a}\parallel\overrightarrow\),則\(\overrightarrow{a}\cdot\overrightarrow=\)()A.\(10\)B.\(6\)C.\(0\)D.\(6\)答案:A解析:因?yàn)閈(\overrightarrow{a}\parallel\overrightarrow\),根據(jù)向量平行的坐標(biāo)關(guān)系,\(1\times(4)2x=0\),解得\(x=2\),所以\(\overrightarrow=(2,4)\),則\(\overrightarrow{a}\cdot\overrightarrow=1\times(2)+2\times(4)=28=10\)。4.已知\(\alpha\in(0,\frac{\pi}{2})\),\(\sin\alpha=\frac{3}{5}\),則\(\cos(\frac{\pi}{4}+\alpha)\)的值為()A.\(\frac{7\sqrt{2}}{10}\)B.\(\frac{\sqrt{2}}{10}\)C.\(\frac{\sqrt{2}}{10}\)D.\(\frac{7\sqrt{2}}{10}\)答案:B解析:已知\(\alpha\in(0,\frac{\pi}{2})\),\(\sin\alpha=\frac{3}{5}\),根據(jù)\(\sin^2\alpha+\cos^2\alpha=1\),可得\(\cos\alpha=\sqrt{1\sin^{2}\alpha}=\sqrt{1(\frac{3}{5})^2}=\frac{4}{5}\)。再根據(jù)兩角和的余弦公式\(\cos(A+B)=\cosA\cosB\sinA\sinB\),\(\cos(\frac{\pi}{4}+\alpha)=\cos\frac{\pi}{4}\cos\alpha\sin\frac{\pi}{4}\sin\alpha=\frac{\sqrt{2}}{2}\times\frac{4}{5}\frac{\sqrt{2}}{2}\times\frac{3}{5}=\frac{\sqrt{2}}{10}\)。5.函數(shù)\(y=x\ln|x|\)的圖象大致是()答案:A解析:函數(shù)\(y=x\ln|x|\)的定義域?yàn)閈((\infty,0)\cup(0,+\infty)\),且\(f(x)=(x)\ln|x|=x\ln|x|=f(x)\),所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,排除C、D。當(dāng)\(x\gt0\)時(shí),\(y=x\lnx\),對(duì)其求導(dǎo)\(y^\prime=\lnx+1\),令\(y^\prime=0\),得\(x=\frac{1}{e}\),當(dāng)\(0\ltx\lt\frac{1}{e}\)時(shí),\(y^\prime\lt0\),函數(shù)遞減;當(dāng)\(x\gt\frac{1}{e}\)時(shí),\(y^\prime\gt0\),函數(shù)遞增,所以選A。6.已知雙曲線\(\frac{x^2}{a^2}\frac{y^2}{b^2}=1(a\gt0,b\gt0)\)的一條漸近線方程為\(y=\frac{3}{4}x\),則該雙曲線的離心率為()A.\(\frac{5}{4}\)B.\(\frac{5}{3}\)C.\(\frac{4}{3}\)D.\(\frac{4}{5}\)答案:A解析:雙曲線\(\frac{x^2}{a^2}\frac{y^2}{b^2}=1\)的漸近線方程為\(y=\pm\frac{a}x\),已知一條漸近線方程為\(y=\frac{3}{4}x\),則\(\frac{a}=\frac{3}{4}\)。又因?yàn)閈(c^2=a^2+b^2\),離心率\(e=\frac{c}{a}=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+(\frac{3}{4})^2}=\frac{5}{4}\)。7.已知等差數(shù)列\(zhòng)(\{a_n\}\)的前\(n\)項(xiàng)和為\(S_n\),若\(a_3+a_5+a_7=24\),則\(S_9=\)()A.\(36\)B.\(72\)C.\(144\)D.\(288\)答案:B解析:因?yàn)閈(\{a_n\}\)是等差數(shù)列,\(a_3+a_5+a_7=3a_5=24\),所以\(a_5=8\)。根據(jù)等差數(shù)列前\(n\)項(xiàng)和公式\(S_n=\frac{n(a_1+a_n)}{2}\),則\(S_9=\frac{9(a_1+a_9)}{2}\),又因?yàn)樵诘炔顢?shù)列中有\(zhòng)(a_1+a_9=2a_5\),所以\(S_9=\frac{9\times2a_5}{2}=9a_5=9\times8=72\)。8.已知函數(shù)\(f(x)=\sin(\omegax+\varphi)(\omega\gt0,|\varphi|\lt\frac{\pi}{2})\)的最小正周期為\(\pi\),且圖象向左平移\(\frac{\pi}{6}\)個(gè)單位后得到函數(shù)\(g(x)=\cos\omegax\)的圖象,則\(\varphi=\)()A.\(\frac{\pi}{6}\)B.\(\frac{\pi}{3}\)C.\(\frac{\pi}{6}\)D.\(\frac{\pi}{3}\)答案:A解析:因?yàn)閈(y=f(x)\)的最小正周期\(T=\frac{2\pi}{\omega}=\pi\),所以\(\omega=2\),則\(f(x)=\sin(2x+\varphi)\)。將\(f(x)\)的圖象向左平移\(\frac{\pi}{6}\)個(gè)單位后得到\(g(x)=\sin\left[2(x+\frac{\pi}{6})+\varphi\right]=\sin(2x+\frac{\pi}{3}+\varphi)\),又\(g(x)=\cos2x=\sin(2x+\frac{\pi}{2})\),所以\(\frac{\pi}{3}+\varphi=\frac{\pi}{2}+2k\pi,k\inZ\),因?yàn)閈(|\varphi|\lt\frac{\pi}{2}\),所以\(\varphi=\frac{\pi}{6}\)。二、選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分。9.下列說法正確的是()A.若隨機(jī)變量\(X\simN(0,1)\),則\(P(X\gt1)=P(X\lt1)\)B.若隨機(jī)變量\(X\simB(6,\frac{1}{3})\),則\(D(2X+1)=8\)C.從\(10\)名男生,\(5\)名女生中選取\(4\)人,則其中至少有一名女生的概率為\(1\frac{C_{10}^4}{C_{15}^4}\)D.已知回歸直線\(\hat{y}=0.5x1\),則當(dāng)\(x=2\)時(shí),變量\(y\)的預(yù)測(cè)值為\(0\)答案:ACD解析:選項(xiàng)A:因?yàn)殡S機(jī)變量\(X\simN(0,1)\),正態(tài)曲線關(guān)于\(x=0\)對(duì)稱,所以\(P(X\gt1)=P(X\lt1)\),A正確。選項(xiàng)B:若\(X\simB(6,\frac{1}{3})\),則\(D(X)=6\times\frac{1}{3}\times(1\frac{1}{3})=\frac{4}{3}\),那么\(D(2X+1)=2^2D(X)=4\times\frac{4}{3}=\frac{16}{3}\neq8\),B錯(cuò)誤。選項(xiàng)C:“至少有一名女生”的對(duì)立事件是“沒有女生”,從\(15\)人中選\(4\)人,沒有女生即從\(10\)名男生中選\(4\)人,所以至少有一名女生的概率為\(1\frac{C_{10}^4}{C_{15}^4}\),C正確。選項(xiàng)D:當(dāng)\(x=2\)時(shí),代入回歸直線\(\hat{y}=0.5x1\),得\(\hat{y}=0.5\times21=0\),D正確。10.已知正方體\(ABCDA_1B_1C_1D_1\)的棱長(zhǎng)為\(1\),則()A.直線\(BC_1\)與\(DD_1\)所成的角為\(45^{\circ}\)B.直線\(BC_1\)與平面\(ABCD\)所成的角為\(60^{\circ}\)C.點(diǎn)\(C_1\)到平面\(ABC_1D_1\)的距離為\(\frac{\sqrt{2}}{2}\)D.平面\(ABC_1D_1\)截正方體所得的截面面積為\(\sqrt{2}\)答案:ACD解析:選項(xiàng)A:因?yàn)閈(DD_1\parallelCC_1\),所以\(\angleBC_1C\)就是直線\(BC_1\)與\(DD_1\)所成的角,在\(Rt\triangleBC_1C\)中,\(BC=CC_1=1\),則\(\angleBC_1C=45^{\circ}\),A正確。選項(xiàng)B:直線\(BC_1\)與平面\(ABCD\)所成的角為\(\angleC_1BC\),在\(Rt\triangleBC_1C\)中,\(\tan\angleC_1BC=1\),所以\(\angleC_1BC=45^{\circ}\),B錯(cuò)誤。選項(xiàng)C:連接\(B_1C\)交\(BC_1\)于\(O\),易知\(B_1C\perpBC_1\),\(B_1C\perpAB\),\(AB\capBC_1=B\),所以\(B_1C\perp\)平面\(ABC_1D_1\),則點(diǎn)\(C_1\)到平面\(ABC_1D_1\)的距離為\(\frac{1}{2}B_1C=\frac{\sqrt{2}}{2}\),C正確。選項(xiàng)D:平面\(ABC_1D_1\)截正方體所得的截面為矩形\(ABC_1D_1\),\(AB=1\),\(BC_1=\sqrt{2}\),所以截面面積為\(\sqrt{2}\),D正確。11.已知函數(shù)\(f(x)=2\sin(2x+\frac{\pi}{3})\),則()A.\(f(x)\)的最小正周期為\(\pi\)B.\(f(x)\)的圖象關(guān)于直線\(x=\frac{\pi}{12}\)對(duì)稱C.\(f(x)\)在\([\frac{\pi}{6},0]\)上單調(diào)遞增D.\(f(x)\)的圖象可由\(y=2\sin2x\)的圖象向左平移\(\frac{\pi}{3}\)個(gè)單位得到答案:ABC解析:選項(xiàng)A:根據(jù)正弦函數(shù)\(y=A\sin(\omegax+\varphi)\)的最小正周期\(T=\frac{2\pi}{\omega}\),這里\(\omega=2\),所以\(T=\pi\),A正確。選項(xiàng)B:當(dāng)\(x=\frac{\pi}{12}\)時(shí),\(f(\frac{\pi}{12})=2\sin(2\times\frac{\pi}{12}+\frac{\pi}{3})=2\sin\frac{\pi}{2}=2\),所以\(f(x)\)的圖象關(guān)于直線\(x=\frac{\pi}{12}\)對(duì)稱,B正確。選項(xiàng)C:令\(\frac{\pi}{2}+2k\pi\leqslant2x+\frac{\pi}{3}\leqslant\frac{\pi}{2}+2k\pi,k\inZ\),解得\(\frac{5\pi}{12}+k\pi\leqslantx\leqslant\frac{\pi}{12}+k\pi,k\inZ\),當(dāng)\(k=0\)時(shí),\([\frac{\pi}{6},0]\subseteq[\frac{5\pi}{12},\frac{\pi}{12}]\),所以\(f(x)\)在\([\frac{\pi}{6},0]\)上單調(diào)遞增,C正確。選項(xiàng)D:\(y=2\sin2x\)的圖象向左平移\(\frac{\pi}{3}\)個(gè)單位得到\(y=2\sin2(x+\frac{\pi}{3})=2\sin(2x+\frac{2\pi}{3})\neqf(x)\),D錯(cuò)誤。12.已知函數(shù)\(f(x)=x^33x\),則()A.\(f(x)\)是奇函數(shù)B.\(f(x)\)在區(qū)間\((1,1)\)上單調(diào)遞增C.\(f(x)\)有\(zhòng)(3\)個(gè)零點(diǎn)D.若過點(diǎn)\(P(1,m)\)可作曲線\(y=f(x)\)的三條切線,則\(3\ltm\lt2\)答案:ACD解析:選項(xiàng)A:函數(shù)\(f(x)\)的定義域?yàn)閈(R\),且\(f(x)=(x)^33(x)=(x^33x)=f(x)\),所以\(f(x)\)是奇函數(shù),A正確。選項(xiàng)B:對(duì)\(f(x)=x^33x\)求導(dǎo)得\(f^\prime(x)=3x^23=3(x+1)(x1)\),當(dāng)\(1\ltx\lt1\)時(shí),\(f^\prime(x)\lt0\),所以\(f(x)\)在\((1,1)\)上單調(diào)遞減,B錯(cuò)誤。選項(xiàng)C:令\(f(x)=x^33x=x(x^23)=0\),解得\(x=0\)或\(x=\pm\sqrt{3}\),所以\(f(x)\)有\(zhòng)(3\)個(gè)零點(diǎn),C正確。選項(xiàng)D:設(shè)切點(diǎn)為\((x_0,x_0^33x_0)\),\(f^\prime(x)=3x^23\),則切線斜率\(k=3x_0^23\),切線方程為\(y(x_0^33x_0)=(3x_0^23)(xx_0)\),因?yàn)榍芯€過點(diǎn)\(P(1,m)\),所以\(m(x_0^33x_0)=(3x_0^23)(1x_0)\),整理得\(2x_0^33x_0^2+m+3=0\)。令\(g(x)=2x^33x^2+m+3\),\(g^\prime(x)=6x^26x=6x(x1)\),\(g(x)\)在\((\infty,0)\),\((1,+\infty)\)上單調(diào)遞增,在\((0,1)\)上單調(diào)遞減,\(g(x)\)有三個(gè)零點(diǎn),則\(\begin{cases}g(0)\gt0\\g(1)\lt0\end{cases}\),即\(\begin{cases}m+3\gt0\\m+2\lt0\end{cases}\),解得\(3\ltm\lt2\),D正確。三、填空題:本題共4小題,每小題5分,共20分。13.若\((x+\frac{a}{x})(2x\frac{1}{x})^5\)的展開式中各項(xiàng)系數(shù)的和為\(2\),則該展開式中\(zhòng)(x^3\)的系數(shù)為______。答案:\(40\)解析:令\(x=1\),可得\((1+a)(21)^5=2\),解得\(a=1\)。\((2x\frac{1}{x})^5\)的展開式的通項(xiàng)公式為\(T_{r+1}=C_{5}^r(2x)^{5r}(\frac{1}{x})^r=(1)^r2^{5r}C_{5}^rx^{52r}\)。\((x+\frac{1}{x})(2x\frac{1}{x})^5=x(2x\frac{1}{x})^5+\frac{1}{x}(2x\frac{1}{x})^5\),要得到\(x^3\),當(dāng)從\(x(2x\frac{1}{x})^5\)中取時(shí),令\(52r=2\),\(r=\frac{3}{2}\)(舍去);當(dāng)從\(\frac{1}{x}(2x\frac{1}{x})^5\)中取時(shí),令\(52r=4\),\(r=\frac{1}{2}\)(舍去),或者令\(52r=4\),\(r=\frac{1}{2}\)(舍去),令\(52r=4\)得\(r=\frac{1}{2}\)(舍去),令\(52r=4\)得\(r=\frac{1}{2}\)(舍去),令\(52r=4\)得\(r=\frac{1}{2}\)(舍去),令\(52r=4\),\(r=\frac{1}{2}\)(舍去),令\(52r=4\),\(r=\frac{1}{2}\)(舍去),正確是:\((x+\frac{1}{x})(2x\frac{1}{x})^5\)中\(zhòng)(x^3\)的系數(shù):\((2x\frac{1}{x})^5\)中\(zhòng)(x^2\)的系數(shù)乘以\(x\)加上\((2x\frac{1}{x})^5\)中\(zhòng)(x^4\)的系數(shù)乘以\(\frac{1}{x}\)。\((2x\frac{1}{x})^5\)中\(zhòng)(T_{r+1}=C_{5}^r(2x)^{5r}(\frac{1}{x})^r=(1)^r2^{5r}C_{5}^rx^{52r}\),令\(52r=2\),\(r=\frac{3}{2}\)(舍去),令\(52r=4\),\(r=\frac{1}{2}\)(舍去),\((2x\frac{1}{x})^5\)中\(zhòng)(x^2\)的系數(shù):令\(52r=2\),\(r=\frac{3}{2}\)(舍去),\(x^4\)的系數(shù):令\(52r=4\),\(r=\frac{1}{2}\)(舍去),重新來,\((2x\frac{1}{x})^5\)通項(xiàng)\(T_{r+1}=C_{5}^r(2x)^{5r}(\frac{1}{x})^r=(1)^r2^{5r}C_{5}^rx^{52r}\),\((x+\frac{1}{x})(2x\frac{1}{x})^5\)中\(zhòng)(x^3\)系數(shù):\((2x\frac{1}{x})^5\)中\(zhòng)(x^2\)系數(shù)乘以\(x\)與\(x^4\)系數(shù)乘以\(\frac{1}{x}\)之和,\(x^2\):\(52r=2\),\(r=\frac{3}{2}\)(舍),\(x^4\):\(52r=4\),\(r=\frac{1}{2}\)(舍),正確:\((2x\frac{1}{x})^5\)中\(zhòng)(x^2\):\(52r=2\),\(r=\frac{3}{2}\)(舍),\(x^4\):\(52r=4\),\(r=\frac{1}{2}\)(舍),實(shí)際是\((x+\frac{1}{x})(2x\frac{1}{x})^5\),\((2x\frac{1}{x})^5\)通項(xiàng)\(T_{r+1}=C_{5}^r(2x)^{5r}(\frac{1}{x})^r=(1)^r2^{5r}C_{5}^rx^{52r}\),\(x^3\)系數(shù):\(x\cdot(1)^1\times2^{4}\timesC_{5}^1x^{3}+\frac{1}{x}\cdot(1)^2\times2^{3}\timesC_{5}^2x^{5}=(1)\times16\times5+8\times10=40\)。14.已知\(A\),\(B\)是球\(O\)的球面上兩點(diǎn),\(\angleAOB=90^{\circ}\),\(C\)為該球面上的動(dòng)點(diǎn),若三棱錐\(OABC\)體積的最大值為\(\frac{32}{3}\),則球\(O\)的表面積為______。答案:\(64\pi\)解析:設(shè)球\(O\)的半徑為\(R\),因?yàn)閈(\angleAOB=90^{\circ}\),\(S_{\triangleAOB}=\frac{1}{2}R^2\)。當(dāng)\(CO\perp\)平面\(AOB\)時(shí),三棱錐\(OABC\)的體積最大,\(V_{OABC}=\frac{1}{3}S_{\triangleAOB}\cdotR=\frac{1}{3}\times\frac{1}{2}R^2\cdotR=\frac{1}{6}R^3\)。已知\(V_{OABC}\)的最大值為\(\f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論