成考(專升本)高數(shù)(一)函數(shù)的單調(diào)性、極值、凹凸性_第1頁
成考(專升本)高數(shù)(一)函數(shù)的單調(diào)性、極值、凹凸性_第2頁
成考(專升本)高數(shù)(一)函數(shù)的單調(diào)性、極值、凹凸性_第3頁
成考(專升本)高數(shù)(一)函數(shù)的單調(diào)性、極值、凹凸性_第4頁
成考(專升本)高數(shù)(一)函數(shù)的單調(diào)性、極值、凹凸性_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

成考(專升本)高數(shù)(一)函數(shù)的單調(diào)性、極值、凹凸性函數(shù)的單調(diào)性01函數(shù)的極值02函數(shù)的凹凸性03目錄CONTENTS函數(shù)的單調(diào)性0101單調(diào)遞增:若對(duì)于區(qū)間內(nèi)任意兩點(diǎn),當(dāng)自變量增加時(shí),函數(shù)值也隨之增加。單調(diào)遞減:若對(duì)于區(qū)間內(nèi)任意兩點(diǎn),當(dāng)自變量增加時(shí),函數(shù)值反而減少。定義區(qū)分:通過比較區(qū)間內(nèi)任意兩點(diǎn)函數(shù)值的大小來判斷。單調(diào)遞增與單調(diào)遞減02利用導(dǎo)數(shù):若導(dǎo)數(shù)大于零,則函數(shù)單調(diào)遞增;若導(dǎo)數(shù)小于零,則函數(shù)單調(diào)遞減。利用差分:若差分大于零,則函數(shù)單調(diào)遞增;若差分小于零,則函數(shù)單調(diào)遞減。利用函數(shù)性質(zhì):某些特殊函數(shù),如指數(shù)函數(shù)、對(duì)數(shù)函數(shù),其單調(diào)性可以根據(jù)函數(shù)的定義直接判斷。單調(diào)性的判斷方法03中值定理:若函數(shù)在區(qū)間上連續(xù),在區(qū)間內(nèi)可導(dǎo),則至少存在一點(diǎn),使得導(dǎo)數(shù)等于區(qū)間端點(diǎn)連線的斜率。羅爾定理:若函數(shù)在閉區(qū)間上連續(xù),在開區(qū)間內(nèi)可導(dǎo),且兩端點(diǎn)函數(shù)值相等,則至少存在一點(diǎn),導(dǎo)數(shù)為零。拉格朗日定理:若函數(shù)在閉區(qū)間上連續(xù),在開區(qū)間內(nèi)可導(dǎo),則至少存在一點(diǎn),使得導(dǎo)數(shù)等于區(qū)間平均變化率。單調(diào)性定理04上升區(qū)間:圖形從左到右上升,對(duì)應(yīng)函數(shù)單調(diào)遞增。下降區(qū)間:圖形從左到右下降,對(duì)應(yīng)函數(shù)單調(diào)遞減。水平區(qū)間:圖形平行于x軸,對(duì)應(yīng)導(dǎo)數(shù)為零或函數(shù)無定義。單調(diào)性在圖形上的表現(xiàn)單調(diào)性的概念函數(shù)單調(diào)性的反證法特殊函數(shù)單調(diào)性的證明假設(shè)反命題:假設(shè)函數(shù)不單調(diào),即存在某區(qū)間內(nèi)函數(shù)值不按單調(diào)性規(guī)律變化。引出矛盾:通過導(dǎo)數(shù)或差分的性質(zhì),引出與假設(shè)矛盾的結(jié)論。得出結(jié)論:由于假設(shè)導(dǎo)致矛盾,故原命題成立,函數(shù)在該區(qū)間單調(diào)?;竞瘮?shù):如冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性可以通過其定義和性質(zhì)證明。復(fù)合函數(shù):利用復(fù)合函數(shù)的單調(diào)性定理,結(jié)合基本函數(shù)的單調(diào)性進(jìn)行證明。構(gòu)造函數(shù):通過構(gòu)造輔助函數(shù),利用已知單調(diào)性的函數(shù)來證明待證函數(shù)的單調(diào)性。導(dǎo)數(shù)正:若某區(qū)間內(nèi)導(dǎo)數(shù)恒大于零,則函數(shù)在該區(qū)間上單調(diào)遞增。導(dǎo)數(shù)負(fù):若某區(qū)間內(nèi)導(dǎo)數(shù)恒小于零,則函數(shù)在該區(qū)間上單調(diào)遞減。導(dǎo)數(shù)零點(diǎn):導(dǎo)數(shù)等于零的點(diǎn)可能是單調(diào)性的分界點(diǎn)。利用導(dǎo)數(shù)證明單調(diào)性利用函數(shù)差分證明單調(diào)性差分正:若某區(qū)間內(nèi)函數(shù)差分恒大于零,則函數(shù)在該區(qū)間上單調(diào)遞增。差分負(fù):若某區(qū)間內(nèi)函數(shù)差分恒小于零,則函數(shù)在該區(qū)間上單調(diào)遞減。差分符號(hào):通過差分符號(hào)的變化判斷函數(shù)的單調(diào)性。單調(diào)性證明01導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系導(dǎo)數(shù)正負(fù):導(dǎo)數(shù)大于零,函數(shù)單調(diào)遞增;導(dǎo)數(shù)小于零,函數(shù)單調(diào)遞減。導(dǎo)數(shù)符號(hào):導(dǎo)數(shù)的符號(hào)變化對(duì)應(yīng)著函數(shù)單調(diào)性的變化。導(dǎo)數(shù)存在性:若導(dǎo)數(shù)在某區(qū)間存在,則該區(qū)間內(nèi)函數(shù)的單調(diào)性可通過導(dǎo)數(shù)判斷。02導(dǎo)數(shù)為零點(diǎn)與單調(diào)性的關(guān)系駐點(diǎn):導(dǎo)數(shù)為零的點(diǎn)稱為駐點(diǎn),可能是函數(shù)單調(diào)性的分界點(diǎn)。極值點(diǎn):駐點(diǎn)也可能是函數(shù)的極值點(diǎn),需進(jìn)一步判斷。單調(diào)性判斷:駐點(diǎn)前后導(dǎo)數(shù)符號(hào)變化,表明單調(diào)性發(fā)生變化。03導(dǎo)數(shù)的符號(hào)變化與單調(diào)區(qū)間符號(hào)變化:導(dǎo)數(shù)從正變負(fù),函數(shù)從遞增變?yōu)檫f減;從負(fù)變正,函數(shù)從遞減變?yōu)檫f增。單調(diào)區(qū)間:通過導(dǎo)數(shù)的符號(hào)變化確定函數(shù)的單調(diào)區(qū)間。區(qū)間劃分:根據(jù)導(dǎo)數(shù)的符號(hào)變化將定義域劃分為若干單調(diào)區(qū)間。04導(dǎo)數(shù)不存在點(diǎn)對(duì)單調(diào)性的影響1.3.4單調(diào)性與導(dǎo)數(shù)的關(guān)系函數(shù)的極值02極值點(diǎn)的分類駐點(diǎn)是導(dǎo)數(shù)為零的點(diǎn)間斷點(diǎn)是函數(shù)不連續(xù)的點(diǎn)導(dǎo)數(shù)不存在的點(diǎn)也可能為極值點(diǎn)極值點(diǎn)的判定方法第一導(dǎo)數(shù)符號(hào)變化法第二導(dǎo)數(shù)判別法高階導(dǎo)數(shù)檢驗(yàn)法極大值與極小值極大值是指函數(shù)在某一點(diǎn)的值大于其附近點(diǎn)的值極小值是指函數(shù)在某一點(diǎn)的值小于其附近點(diǎn)的值這兩種值是相對(duì)于局部范圍內(nèi)的其他點(diǎn)而言的局部極值與全局極值局部極值是指函數(shù)在某個(gè)鄰域內(nèi)的極值全局極值是指函數(shù)在整個(gè)定義域內(nèi)的最大值或最小值全局極值是局部極值的一個(gè)特殊情況極值的定義找出函數(shù)的導(dǎo)數(shù)求導(dǎo)數(shù)為零的點(diǎn)檢驗(yàn)這些點(diǎn)的二階導(dǎo)數(shù)或?qū)?shù)符號(hào)變化利用導(dǎo)數(shù)求極值計(jì)算函數(shù)的二階導(dǎo)數(shù)在駐點(diǎn)處判斷二階導(dǎo)數(shù)的正負(fù)如果二階導(dǎo)數(shù)大于零,則為極小值;小于零,則為極大值利用二階導(dǎo)數(shù)判別極值通過微分方程求解利用微分近似值判斷極值分析函數(shù)的增減性確定極值利用微分法求極值對(duì)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等特殊函數(shù)求極值分析特殊函數(shù)的性質(zhì)確定極值類型應(yīng)用特殊函數(shù)的已知極值特性特殊函數(shù)極值的求解極值的計(jì)算極值在實(shí)際問題中的應(yīng)用在物理學(xué)中,利用極值求解最短路徑問題在經(jīng)濟(jì)學(xué)中,利用極值分析成本和收益的最大化或最小化在工程學(xué)中,利用極值優(yōu)化設(shè)計(jì)方案極值與最值問題的轉(zhuǎn)換將最值問題轉(zhuǎn)化為極值問題來求解通過比較各極值點(diǎn)的大小確定最值運(yùn)用極值性質(zhì)簡化最值問題的求解極值與函數(shù)圖像的關(guān)系函數(shù)的極值點(diǎn)對(duì)應(yīng)圖像的局部最高點(diǎn)或最低點(diǎn)函數(shù)圖像的拐點(diǎn)可能與極值點(diǎn)相關(guān)極值可以幫助我們了解函數(shù)圖像的形態(tài)極值在優(yōu)化問題中的應(yīng)用在工程優(yōu)化中,利用極值提高效率在生產(chǎn)優(yōu)化中,利用極值降低成本在資源優(yōu)化中,利用極值實(shí)現(xiàn)最大利用效率極值的應(yīng)用函數(shù)的凹凸性03凹函數(shù):函數(shù)圖形像拱橋一樣向上彎曲凸函數(shù):函數(shù)圖形像山谷一樣向下彎曲區(qū)分方法:通過函數(shù)圖像或利用切線判定凹函數(shù)與凸函數(shù)判定方法一:利用切線與割線的位置關(guān)系判定方法二:通過函數(shù)的一階導(dǎo)數(shù)和二階導(dǎo)數(shù)判定方法三:根據(jù)函數(shù)的泰勒展開式凹凸性的判定方法一階導(dǎo)數(shù):單調(diào)性與凹凸性無直接關(guān)系二階導(dǎo)數(shù):二階導(dǎo)數(shù)大于零時(shí)函數(shù)為凹,小于零時(shí)函數(shù)為凸特殊情況:二階導(dǎo)數(shù)為零的點(diǎn)可能是拐點(diǎn)凹凸性與導(dǎo)數(shù)的關(guān)系凹函數(shù):任意兩點(diǎn)間的弦在函數(shù)圖形下方凸函數(shù):任意兩點(diǎn)間的弦在函數(shù)圖形上方拐點(diǎn):凹凸性發(fā)生變化的點(diǎn)凹凸性在圖形上的特征凹凸性的概念04基本函數(shù):指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等復(fù)合函數(shù):利用鏈?zhǔn)椒▌t及基本函數(shù)凹凸性特定條件:給定條件下的函數(shù)凹凸性02基本原理:二階導(dǎo)數(shù)符號(hào)與凹凸性的關(guān)系特例分析:二階導(dǎo)數(shù)為零時(shí)的處理綜合應(yīng)用:多變量函數(shù)的凹凸性利用二階導(dǎo)數(shù)證明凹凸性特殊函數(shù)凹凸性的證明03假設(shè)法:假設(shè)函數(shù)不凹凸,導(dǎo)出矛盾反證步驟:構(gòu)造特定點(diǎn),利用導(dǎo)數(shù)性質(zhì)反證結(jié)論:推翻假設(shè),證明函數(shù)凹凸01方法一:利用一階導(dǎo)數(shù)的增減性方法二:利用二階導(dǎo)數(shù)的正負(fù)性方法三:利用導(dǎo)數(shù)的組合判定利用導(dǎo)數(shù)證明凹凸性函數(shù)凹凸性的反證法凹凸性的證明凹凸性與函數(shù)極值的關(guān)系凹函數(shù):局部極小值點(diǎn)也是全局最小值點(diǎn)凸函數(shù):局部極大值點(diǎn)也是全局最大值點(diǎn)無關(guān)性:極值存在與否與凹凸性無必然聯(lián)系凹凸性對(duì)極值點(diǎn)的影響凹凸性:影響極值點(diǎn)的唯一性和穩(wěn)定性極值點(diǎn):凹凸性變化點(diǎn)可能是極值點(diǎn)影響因素

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論