蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬題目解析_第1頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬題目解析_第2頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬題目解析_第3頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬題目解析_第4頁(yè)
蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬題目解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)模擬題目解析一、解答題1.如圖,直線,、是、上的兩點(diǎn),直線與、分別交于點(diǎn)、,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.2.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說(shuō)明理由.3.如圖,平分,平分,請(qǐng)判斷與的位置關(guān)系并說(shuō)明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn),使,當(dāng)直角頂點(diǎn)點(diǎn)移動(dòng)時(shí),問(wèn)與否存在確定的數(shù)量關(guān)系?并說(shuō)明理由.如圖,為線段上一定點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn)且與的位置關(guān)系保持不變,①當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說(shuō)明理由.②當(dāng)點(diǎn)在射線的反向延長(zhǎng)線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?直接寫(xiě)出猜想結(jié)論,不需說(shuō)明理由.4.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過(guò)AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說(shuō)明理由.5.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長(zhǎng),現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫(xiě)出四邊形的周長(zhǎng).(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過(guò)程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫(xiě)出旋轉(zhuǎn)的時(shí)間.6.我們知道:光線反射時(shí),反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點(diǎn)為點(diǎn)O,為法線(過(guò)入射點(diǎn)O且垂直于鏡面的直線),為反射光線,此時(shí)反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點(diǎn)O,一束光線從點(diǎn)A出發(fā),經(jīng)過(guò)平面鏡兩次反射后,恰好經(jīng)過(guò)點(diǎn)B.①如圖2,當(dāng)為多少度時(shí),光線?請(qǐng)說(shuō)明理由.②如圖3,若兩條光線、所在的直線相交于點(diǎn)E,延長(zhǎng)發(fā)現(xiàn)和分別為一個(gè)內(nèi)角和一個(gè)外角的平分線,則與之間滿足的等量關(guān)系是_______.(直接寫(xiě)出結(jié)果)(2)三個(gè)平面鏡、、相交于點(diǎn)M、N,一束光線從點(diǎn)A出發(fā),經(jīng)過(guò)平面鏡三次反射后,恰好經(jīng)過(guò)點(diǎn)E,請(qǐng)直接寫(xiě)出、、與之間滿足的等量關(guān)系.7.[原題](1)已知直線,點(diǎn)P為平行線AB,CD之間的一點(diǎn),如圖①,若,BE平分,DE平分,則__________.[探究](2)如圖②,,當(dāng)點(diǎn)P在直線AB的上方時(shí).若,和的平分線相交于點(diǎn),與的平分線相交于點(diǎn),與的平分線相交于點(diǎn)……以此類推,求的度數(shù).[變式](3)如圖③,,的平分線的反向延長(zhǎng)線和的補(bǔ)角的平分線相交于點(diǎn)E,試猜想與的數(shù)量關(guān)系,并說(shuō)明理由.8.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點(diǎn)E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論;(3)如圖3,在(2)的條件下,過(guò)P點(diǎn)作交于點(diǎn)H,連接,若平分,,求的度數(shù).9.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,在(2)的條件下,且的延長(zhǎng)線與的延長(zhǎng)線有交點(diǎn),當(dāng)點(diǎn)在線段的延長(zhǎng)線上從左向右移動(dòng)的過(guò)程中,直接寫(xiě)出與所有可能的數(shù)量關(guān)系.10.如圖1,在中,平分,平分.(1)若,則的度數(shù)為_(kāi)_____;(2)若,直線經(jīng)過(guò)點(diǎn).①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點(diǎn)旋轉(zhuǎn),分別交線段于點(diǎn),試問(wèn)在旋轉(zhuǎn)過(guò)程中的度數(shù)是否會(huì)發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請(qǐng)說(shuō)明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點(diǎn),與的延長(zhǎng)線交于點(diǎn),請(qǐng)直接寫(xiě)出與的關(guān)系(用含的代數(shù)式表示).【參考答案】一、解答題1.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過(guò)點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問(wèn)題.2.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.3.(1)詳見(jiàn)解析;(2)∠BAE+∠MCD=90°,理由詳見(jiàn)解析;(3)詳見(jiàn)解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見(jiàn)解析;(2)∠BAE+∠MCD=90°,理由詳見(jiàn)解析;(3)詳見(jiàn)解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過(guò)E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點(diǎn)睛:本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.4.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯(cuò)角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵M(jìn)F,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識(shí),最后一個(gè)問(wèn)題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.5.(1)見(jiàn)詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過(guò)點(diǎn)E作EK∥MN,利用平行線性解析:(1)見(jiàn)詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過(guò)點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過(guò)點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過(guò)點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過(guò)點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長(zhǎng)為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長(zhǎng)BC交MN于K,延長(zhǎng)DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.6.(1)①90°,理由見(jiàn)解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=解析:(1)①90°,理由見(jiàn)解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=180°,可得α+β=90°,再根據(jù)三角形內(nèi)角和定理進(jìn)行計(jì)算即可;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據(jù)三角形外角性質(zhì)可得∠MEN=2(β-α),再根據(jù)三角形外角性質(zhì)可得∠POQ=β-α,進(jìn)而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內(nèi)角和表示出∠BFD,再將∠M,∠N,∠BCD進(jìn)行運(yùn)算,變形得到∠BFD,即可得到關(guān)系式.【詳解】解:(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當(dāng)AM∥BN時(shí),∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當(dāng)∠POQ為90度時(shí),光線AM∥NB;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設(shè)∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì)以及多邊形內(nèi)角和定理的綜合應(yīng)用,解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ);三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.7.(1);(2);(3),理由見(jiàn)解析【分析】(1)過(guò)作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過(guò)作解析:(1);(2);(3),理由見(jiàn)解析【分析】(1)過(guò)作,依據(jù)平行線的性質(zhì),即可得到,依據(jù)角平分線即可得出的度數(shù);(2)依據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),求得,,,以此類推的度數(shù)為;(3)過(guò)作,進(jìn)而得出,再根據(jù)平行線的性質(zhì)以及三角形外角性質(zhì),即可得到【詳解】解:(1)如圖1,過(guò)作,而,,,,,又,,平分,平分,,,,故答案為:;(2)如圖2,和的平分線交于點(diǎn),,,,,,與的角平分線交于點(diǎn),,,,,,同理可得,,以此類推,的度數(shù)為.(3).理由如下:如圖3,過(guò)作,而,,,,,又的角平分線的反向延長(zhǎng)線和的補(bǔ)角的角平分線交于點(diǎn),,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì)以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.8.(1)證明見(jiàn)解析;(2),理由見(jiàn)解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦解析:(1)證明見(jiàn)解析;(2),理由見(jiàn)解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦法構(gòu)建方程即可解決問(wèn)題;【詳解】解:(1)如圖1中,,,,.(2)結(jié)論:如圖2中,.理由:作.,,,,,,,同理可證:,∵平分,平分,,,∵,,;(3)設(shè),.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【點(diǎn)睛】本題考查平行線的判定和性質(zhì),角平分線的定義等知識(shí),(2)中能正確作出輔助線是解題關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題關(guān)鍵.9.(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過(guò)M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問(wèn)題.(3)分兩種情形分別求解即可;【詳解】解:(1)過(guò)M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長(zhǎng)BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長(zhǎng)BA、DC使之相交于點(diǎn)E,延長(zhǎng)MC與BA的延長(zhǎng)線相交于點(diǎn)F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點(diǎn)睛】本題考查了平行線的性質(zhì).解答該題時(shí)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論