新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2026屆數(shù)學高一上期末復習檢測試題含解析_第1頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2026屆數(shù)學高一上期末復習檢測試題含解析_第2頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2026屆數(shù)學高一上期末復習檢測試題含解析_第3頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2026屆數(shù)學高一上期末復習檢測試題含解析_第4頁
新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2026屆數(shù)學高一上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆維吾爾自治區(qū)阿克蘇市農(nóng)一師高級中學2026屆數(shù)學高一上期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.經(jīng)過點(2,1)的直線l到A(1,1),B(3,5)兩點的距離相等,則直線l的方程為A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不對2.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.3.已知函數(shù)(為自然對數(shù)的底數(shù)),若對任意,不等式都成立,則實數(shù)的取值范圍是A. B.C. D.4.若是圓上動點,則點到直線距離的最大值A(chǔ).3 B.4C.5 D.65.已知向量,且,則的值為()A.1 B.2C. D.36.函數(shù)的定義域為A. B.C. D.7.已知為第二象限角,則的值是()A.3 B.C.1 D.8.以下四組數(shù)中大小比較正確的是()A. B.C. D.9.C,S分別表示一個扇形的周長和面積,下列能作為有序數(shù)對取值的是()A. B.C. D.10.已知定義在上的偶函數(shù),且當時,單調(diào)遞減,則關(guān)于x的不等式的解集是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若一扇形的圓心角為,半徑為,則該扇形的面積為__________.12.16、17世紀之交,隨著天文、航海、工程、貿(mào)易以及軍事的發(fā)展,改進數(shù)字計算方法成了當務之急,數(shù)學家納皮爾在研究天文學的過程中,為簡化計算發(fā)明了對數(shù).直到18世紀,才由瑞士數(shù)學家歐拉發(fā)現(xiàn)了指數(shù)與對數(shù)的互逆關(guān)系,即.現(xiàn)在已知,則__________13.過點且在軸,軸上截距相等的直線的方程為___________.14.由直線上的任意一個點向圓引切線,則切線長的最小值為________.15.已知集合,,則_________.16.如圖,在正方體中,、分別是、上靠近點的三等分點,則異面直線與所成角的大小是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù)在上的值域18.已知向量,向量分別為與向量同向的單位向量.(Ⅰ)求向量與的夾角;(Ⅱ)求向量的坐標.19.如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF//AC,AB=,CE=EF=1(Ⅰ)求證:AF//平面BDE;(Ⅱ)求證:CF⊥平面BDE;20.已知q和n均為給定的大于1的自然數(shù).設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}(1)當q=2,n=3時,用列舉法表示集合A.(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.21.已知函數(shù).(1)求函數(shù)的周期和單調(diào)遞減區(qū)間;(2)將的圖象向右平移個單位,得到的圖象,已知,,求值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】當直線l的斜率不存在時,直線x=2顯然滿足題意;當直線l的斜率存在時,設(shè)直線l的斜率為k則直線l為y-1=kx-2,即由A到直線l的距離等于B到直線l的距離得:-kk化簡得:-k=k-4或k=k-4(無解),解得k=2∴直線l的方程為2x-y-3=0綜上,直線l的方程為2x-y-3=0或x=2故選C2、B【解析】由已知可得,,求得關(guān)于直線的對稱點為,則,計算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設(shè)關(guān)于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.3、C【解析】由題意結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性求解不等式即可.【詳解】由函數(shù)的解析式可知函數(shù)為定義在R上的增函數(shù),且函數(shù)為奇函數(shù),故不等式即,據(jù)此有,即恒成立;當時滿足題意,否則應有:,解得:,綜上可得,實數(shù)的取值范圍是.本題選擇C選項.【點睛】對于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號“f”,轉(zhuǎn)化為解不等式(組)的問題.4、C【解析】圓的圓心為(0,3),半徑為1.是圓上動點,則點到直線距離的最大值為圓心到直線的距離加上半徑即可.又直線恒過定點,所以.所以點到直線距離的最大值為4+1=5.故選C.5、A【解析】由,轉(zhuǎn)化為,結(jié)合數(shù)量積的坐標運算得出,然后將所求代數(shù)式化為,并在分子分母上同時除以,利用弦化切的思想求解【詳解】由題意可得,即∴,故選A【點睛】本題考查垂直向量的坐標表示以及同角三角函數(shù)的基本關(guān)系,考查弦化切思想的應用,一般而言,弦化切思想應用于以下兩方面:(1)弦的分式齊次式:當分式是關(guān)于角弦的次分式齊次式,分子分母同時除以,可以將分式由弦化為切;(2)弦的二次整式或二倍角的一次整式:先化為角的二次整式,然后除以化為弦的二次分式齊次式,并在分子分母中同時除以可以實現(xiàn)弦化切6、C【解析】要使函數(shù)有意義,需滿足解得,所以函數(shù)的定義域為考點:求函數(shù)的定義域【易錯點睛】本題是求函數(shù)的定義域,注意分母不能為0,同時本題又將對數(shù)的運算,交集等知識聯(lián)系在一起,重點考查學生思維能力的全面性和縝密性,凸顯了知識之間的聯(lián)系性、綜合性,能較好的考查學生的計算能力和思維的全面性.學生很容易忽略,造成失誤,注意在對數(shù)函數(shù)中,真數(shù)一定是正數(shù),負數(shù)和零無意義考點:求函數(shù)的定義域7、C【解析】由為第二象限角,可得,再結(jié)合,化簡即可.【詳解】由題意,,因為為第二象限角,所以,所以.故選:C.8、C【解析】結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)性質(zhì)即可求解詳解】對A,,故,錯誤;對B,在第一象限為增函數(shù),故,錯誤;對C,為增函數(shù),故,正確;對D,,,故,錯誤;故選:C【點睛】本題考查根據(jù)指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)性質(zhì)比較大小,屬于基礎(chǔ)題9、B【解析】設(shè)扇形半徑為,弧長為,則,,根據(jù)選項代入數(shù)據(jù)一一檢驗即可【詳解】設(shè)扇形半徑為,弧長為,則,當,有,則無解,故A錯;當,有得,故B正確;當,有,則無解,故C錯;當,有,則無解,故D錯;故選:B10、D【解析】由偶函數(shù)的性質(zhì)求得,利用偶函數(shù)的性質(zhì)化不等式中自變量到上,然后由單調(diào)性轉(zhuǎn)化求解【詳解】解:由題意,,的定義域,時,遞減,又是偶函數(shù),因此不等式轉(zhuǎn)化為,,,解得故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用扇形的面積公式可求得結(jié)果.【詳解】扇形的圓心角為,因此,該扇形的面積為.故答案:.12、3【解析】由將對數(shù)轉(zhuǎn)化為指數(shù)13、或【解析】當直線不過原點時設(shè)截距式方程;當直線過原點時設(shè),分別將點代入即可【詳解】由題,當直線不過原點時設(shè),則,所以,則直線方程為,即;當直線過原點時設(shè),則,所以,則直線方程為,即,故答案為:或【點睛】本題考查求直線方程,考查截距式方程的應用,截距相同的直線問題,需注意過原點的情況14、【解析】利用切線和點到圓心的距離關(guān)系即可得到結(jié)果.【詳解】圓心坐標,半徑要使切線長最小,則只需要點到圓心的距離最小,此時最小值為圓心到直線的距離,此時,故答案為:【點睛】本題考查了直線與圓的位置關(guān)系,同時考查了點到直線的距離公式,屬于基礎(chǔ)題.15、【解析】由對數(shù)函數(shù)單調(diào)性,求出集合A,再根據(jù)交集的定義即可求解.【詳解】解:,,,故答案為:.16、【解析】連接,可得出,證明出四邊形為平行四邊形,可得,可得出異面直線與所成角為或其補角,分析的形狀,即可得出的大小,即可得出答案.【詳解】連接、、,,,在正方體中,,,,所以,四邊形為平行四邊形,,所以,異面直線與所成的角為.易知為等邊三角形,.故答案為:.【點睛】本題考查異面直線所成角的計算,一般利用平移直線法,選擇合適的三角形求解,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為;單調(diào)遞增區(qū)間為;(2)【解析】(1)利用二倍角和輔助角公式化簡得到,由解析式可確定最小正周期;令,解不等式可求得單調(diào)遞增區(qū)間;(2)利用可求得的范圍,對應正弦函數(shù)可確定的范圍,進而得到所求值域.【詳解】(1),的最小正周期;令,解得:,的單調(diào)遞增區(qū)間為;(2)當時,,,,即在上的值域為.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)運用向量的數(shù)量積求解即可.(Ⅱ)先根據(jù)單位向量的概念求得,再求的坐標試題解析:(Ⅰ)因為向量,所以,,所以,又因為,所以.即向量與的夾角為(Ⅱ)由題意得,,所以即向量的坐標為19、(Ⅰ)見解析;(Ⅱ)見解析【解析】(1)設(shè)AC與BD交于點G.因為EF∥AG,且EF=1,AG=AC=1,所以四邊形AGEF為平行四邊形.所以AF∥EG.因為EG?平面BDE,AF?平面BDE,所以AF∥平面BDE.(2)連接FG.因為EF∥CG,EF=CG=1,且CE=1,所以四邊形CEFG為菱形.所以CF⊥EG.因為四邊形ABCD為正方形,所以BD⊥AC.又因平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.20、(1)A={0,1,2,3,4,5,6,7};(2)見解析.【解析】(Ⅰ)當q=2,n=3時,M={0,1},A={x|x=x1+x2?2+x3?22,xi∈M,i=1,2,3}.即可得到集合A;(Ⅱ)由于ai,bi∈M,i=1,2,…,n.a(chǎn)n<bn,可得an-bn≤-1.由題意可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤-[1+q+…+qn-2+qn-1],再利用等比數(shù)列的前n項和公式即可得出試題解析:(1)當q=2,n=3時,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}(2)證明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an<bn,可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤(q-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論