版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
瀘州市重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是()A. B.C. D.2.基本再生數(shù)與世代間隔是流行病學(xué)基本參數(shù),基本再生數(shù)是指一個感染者傳染的平均人數(shù),世代間隔指兩代間傳染所需的平均時間,在型病毒疫情初始階段,可以用指數(shù)函數(shù)模型描述累計感染病例數(shù)隨時間(單位:天)的變化規(guī)律,指數(shù)增長率與、近似滿足,有學(xué)者基于已有數(shù)據(jù)估計出,.據(jù)此,在型病毒疫情初始階段,累計感染病例數(shù)增加至的4倍,至少需要()(參考數(shù)據(jù):)A.6天 B.7天C.8天 D.9天3.已知直線經(jīng)過點,,則該直線的斜率是A. B.C. D.4.已知,則a,b,c的大小關(guān)系為()A. B.C. D.5.已知,則的取值范圍是()A. B.C. D.6.函數(shù)圖像大致為()A. B.C. D.7.定義在上的偶函數(shù)在時為增函數(shù),若實數(shù)滿足,則的取值范圍是A. B.C. D.8.已知向量,,那么()A.5 B.C.8 D.9.下列命題中,其中不正確個數(shù)是①已知冪函數(shù)的圖象經(jīng)過點,則②函數(shù)在區(qū)間上有零點,則實數(shù)的取值范圍是③已知平面平面,平面平面,,則平面④過所在平面外一點,作,垂足為,連接、、,若有,則點是的內(nèi)心A.1 B.2C.3 D.410.已知,且,則下列不等式一定成立的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)偶函數(shù)的定義域為,函數(shù)在上為單調(diào)函數(shù),則滿足的所有的取值集合為______12.已知冪函數(shù)的圖象經(jīng)過點,則___________.13.請寫出一個最小正周期為,且在上單調(diào)遞增的函數(shù)__________14.已知關(guān)于x的不等式的解集為,則的解集為_________15.已知表示不超過實數(shù)的最大整數(shù),如,,為取整函數(shù),是函數(shù)的零點,則__________16.若f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=,若方程f(x)=kx恰有3個不同的根,則實數(shù)k的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)是定義在上的奇函數(shù),當時有.(1)求函數(shù)的解析式;(2)判斷函數(shù)在上的單調(diào)性,并用定義證明.18.一個工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為()件.當時,年銷售總收入為()萬元;當時,年銷售總收入為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為萬元.(年利潤=年銷售總收入一年總投資)(1)求(萬元)與(件)的函數(shù)關(guān)系式;(2)當該工廠的年產(chǎn)量為多少件時,所得年利潤最大?最大年利潤是多少?19.已知的三個頂點為,,.(1)求邊所在直線的方程;(2)若邊上的中線所在直線的方程為,且,求的值.20.設(shè)函數(shù).(1)求的單調(diào)增區(qū)間;(2)求在上的最大值與最小值.21.已知函數(shù).(1)當時,恒成立,求實數(shù)的取值范圍;(2)是否同時存在實數(shù)和正整數(shù),使得函數(shù)在上恰有個零點?若存在,請求出所有符合條件的和的值;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】如圖,取中點,則平面,故,因此與平面所成角即為,設(shè),則,,即,故,故選:C.2、B【解析】根據(jù)題意將給出的數(shù)據(jù)代入公式即可計算出結(jié)果【詳解】因為,,,所以可以得到,由題意可知,所以至少需要7天,累計感染病例數(shù)增加至的4倍故選:B3、D【解析】根據(jù)斜率公式,,選D.4、B【解析】首先求出、,即可判斷,再利用作差法判斷,即可得到,再判斷,即可得解;【詳解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故選:B5、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)即可確定的范圍.【詳解】由對數(shù)及不等式的性質(zhì)知:,而,所以.故選:B6、C【解析】先分析給定函數(shù)的奇偶性,排除兩個選項,再在x>0時,探討函數(shù)值正負即可判斷得解.【詳解】函數(shù)的定義域為,,即函數(shù)是定義域上的奇函數(shù),其圖象關(guān)于原點對稱,排除選項A,B;x>0時,,而,則有,顯然選項D不滿足,C符合要求.故選:C7、C【解析】因為定義在上的偶函數(shù),所以即又在時為增函數(shù),則,解得故選點睛:本題考查了函數(shù)的奇偶性,單調(diào)性和運用,考查對數(shù)不等式的解法及運算能力,所求不等式中與由對數(shù)式運算法則可知互為相反數(shù),與偶函數(shù)的性質(zhì)結(jié)合可將不等式化簡,借助函數(shù)在上是增函數(shù)可確定在為減函數(shù),利用偶函數(shù)的對稱性可得到自變量的范圍,從而求得關(guān)于的不等式,結(jié)合對數(shù)函數(shù)單調(diào)性可得到的取值范圍8、B【解析】根據(jù)平面向量模的坐標運算公式,即可求出結(jié)果.【詳解】因為向量,,所以.故選:B.9、B【解析】①②因為函數(shù)在區(qū)間上有零點,所以或,即③平面平面,平面平面,,在平面內(nèi)取一點P作PA垂直于平面與平面的交線,作PB垂直于平面,則所以平面④因為,且,所以,即是的外心所以正確命題為①③,選B10、D【解析】對A,B,C,利用特殊值即可判斷,對D,利用不等式的性質(zhì)即可判斷.【詳解】解:對A,令,,此時滿足,但,故A錯;對B,令,,此時滿足,但,故B錯;對C,若,,則,故C錯;對D,,則,故D正確.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵,又函數(shù)在上為單調(diào)函數(shù)∴=∴,或∴∴滿足的所有的取值集合為故答案為12、##【解析】根據(jù)題意得到,求出的值,進而代入數(shù)據(jù)即可求出結(jié)果.【詳解】由題意可知,即,所以,即,所以,因此,故答案為:.13、或(不唯一).【解析】根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可.【詳解】解:根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可,如或滿足題意故答案為:或(不唯一).14、或【解析】由已知條件知,結(jié)合根與系數(shù)關(guān)系可得,代入化簡后求解,即可得出結(jié)論.【詳解】關(guān)于x的不等式的解集為,可得,方程的兩根為,∴,所以,代入得,,即,解得或.故答案為:或.【點睛】本題考查一元二次不等式與一元二次方程的關(guān)系,以及解一元二次不等式,屬于基礎(chǔ)題.易錯點是忽視對的符號的判斷.15、2【解析】由于,所以,故.【點睛】本題主要考查對新定義概念的理解,考查利用二分法判斷函數(shù)零點的大概位置.首先研究函數(shù),令無法求解出對應(yīng)的零點,考慮用二分法來判斷,即計算,則零點在區(qū)間上.再結(jié)合取整函數(shù)的定義,可求出的值.16、[-,-)∪(,]【解析】利用周期與對稱性得出f(x)的函數(shù)圖象,根據(jù)交點個數(shù)列出不等式得出k的范圍【詳解】∵當x>2時,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期為1的函數(shù),作出y=f(x)的函數(shù)圖象如下:∵方程f(x)=kx恰有3個不同的根,∴y=f(x)與y=kx有三個交點,若k>0,則若k<0,由對稱性可知.故答案為[-,-)∪(,].【點睛】本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,函數(shù)周期與奇偶性的應(yīng)用,方程根的問題常轉(zhuǎn)化為函數(shù)圖象的交點問題,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】(1)當時,則,可得,進而得到函數(shù)的解析式;(2)利用函數(shù)的單調(diào)性的定義,即可證得函數(shù)的單調(diào)性,得到結(jié)論.【詳解】(1)由題意,當時,則,可得,因為函數(shù)為奇函數(shù),所以,所以函數(shù)的解析式為.(2)函數(shù)在單調(diào)遞增函數(shù).證明:設(shè),則因為,所以所以,即故在為單調(diào)遞增函數(shù)【點睛】本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的解析式,以及函數(shù)的單調(diào)性的判定與證明,其中解答中熟記函數(shù)的單調(diào)性的定義,以及熟練應(yīng)用的函數(shù)的奇偶性是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)();(2)當年產(chǎn)量為件時,所得年利潤最大,最大年利潤為萬元.【解析】(1)根據(jù)已知條件,分當時和當時兩種情況,分別求出年利潤的表達式,綜合可得答案;(2)根據(jù)(1)中函數(shù)解析式,求出最大值點和最大值即可【詳解】(1)由題意得:當時,,當時,,故();(2)當時,,當時,,而當時,,故當年產(chǎn)量為件時,所得年利潤最大,最大年利潤為萬元.【點睛】本題主要考查函數(shù)模型及最值的求法,正確建立函數(shù)關(guān)系是解題的關(guān)鍵,屬于??碱}.19、(Ⅰ);(Ⅱ)或【解析】Ⅰ由斜率公式可得,結(jié)合點斜式方程整理計算可得BC邊所在直線方程為.Ⅱ由題意可得,則△ABC的BC邊上的高,據(jù)此由點到直線距離公式和直線方程得到關(guān)于m,n的方程組,求解方程組可得,或,.【詳解】Ⅰ,,.,可得直線BC方程為,化簡,得BC邊所在直線方程為.Ⅱ由題意,得,,解之得,由點到直線的距離公式,得,化簡得或,或.解得,或,.【點睛】本題主要考查直線方程的求解,點到直線距離公式的應(yīng)用,方程的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1)(2)最大值為2,最小值為【解析】(1)利用三角恒等變換化簡可得,根據(jù)正弦型函數(shù)的單調(diào)性計算即可得出結(jié)果.(2)由得,利用正弦函數(shù)的圖像和性質(zhì)計算即可得出結(jié)果.【小問1詳解】令,得,所以的單調(diào)增區(qū)間為【小問2詳解】由得,所以當,即時,取最大值2;當,即時,取最小值.21、(1);(2)存在,當時,;當時,.【解析】(1)利用三角恒等變換思想得出,令,,由題意可知對任意的,可得出,進而可解得實數(shù)的取值范圍;(2)由題意可知,函數(shù)與直線在上恰有個交點,然后對實數(shù)的取值進行分類討論,考查實數(shù)在不同取值下兩個函數(shù)的交點個數(shù),由此可得出結(jié)論.【詳解】(1),當時,,,則,要使對任意恒成立,令,則,對任意恒成立,只需,解得,實數(shù)的取值范圍為;(2)假設(shè)同時存在實數(shù)和正整數(shù)滿足條件,函數(shù)在上恰有個零點,即函數(shù)與直線在上恰有個交點.當時,,作出函數(shù)在區(qū)間上的圖象如下圖所示:①當或時,函數(shù)與直線在上無交點;②當或時,函數(shù)與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 律師諒解協(xié)議書
- 床品清洗協(xié)議書
- 廣西出境合同范本
- 應(yīng)急保供協(xié)議書
- 證券跳槽協(xié)議書
- 引進項目協(xié)議書
- 藥師聘請協(xié)議書
- 裝修受傷協(xié)議書
- 怎樣打開協(xié)議書
- 異地置換協(xié)議書
- 2025年海北朵拉農(nóng)牧投資開發(fā)有限公司招聘3人備考題庫含答案詳解
- 氫能與燃料電池技術(shù) 課件 5-燃料電池
- DG-TJ08-2011-2007 鋼結(jié)構(gòu)檢測與鑒定技術(shù)規(guī)程
- 【課件】臺灣的社區(qū)總體營造
- 重慶市兩江新區(qū)2023-2024學(xué)年五年級上學(xué)期英語期末試卷
- BGO晶體、LYSO晶體、碲鋅鎘晶體項目可行性研究報告寫作模板-備案審批
- 昆明理工大學(xué)《機器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023版國開電大本科《高級財務(wù)會計》在線形考(任務(wù)一至四)試題及答案
- 難治性類風(fēng)濕關(guān)節(jié)炎的診治進展
- 航天禁(限)用工藝目錄(2021版)-發(fā)文稿(公開)
- 城鎮(zhèn)職工醫(yī)療保險
評論
0/150
提交評論