版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
河南省重點高中2026屆高二上數(shù)學期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.2.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.83.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.4.已知向量,則()A. B.C. D.5.內(nèi)角A,B,C的對邊分別為a,b,c.若,則一定是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形6.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.7.二次方程的兩根為2,,那么關于的不等式的解集為()A.或 B.或C. D.8.過點與直線平行的直線的方程是()A. B.C. D.9.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項,則的值為()A.1225 B.1275C.1326 D.136210.曲線與曲線的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等11.執(zhí)行如圖的程序框圖,輸出的S的值為()A. B.0C.1 D.212.若,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,,公差,則_________14.已知是數(shù)列的前n項和,且,則________;數(shù)列的通項公式________15.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點,使得經(jīng)過這三個頂點的平面與直線垂直.這三個頂點可以是________16.已知球的表面積是,則該球的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,的前項和為,且數(shù)列是公差為-3的等差數(shù)列.(1)求;(2)若,數(shù)列前項和為.18.(12分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無須說明理由(要求:坐標系中要標出關鍵點);(3)求出方程的解的個數(shù).19.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑的圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,當時,恒成立,求實數(shù)的取值范圍.21.(12分)已知數(shù)列的通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論的零點個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】恰好為拋物線的焦點,等于到準線的距離,要想最小,過圓心作拋物線的準線的垂線交拋物線于點,交圓于,最小值等于圓心到準線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;2、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D3、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A4、B【解析】根據(jù)向量加減法運算的坐標表示即可得到結(jié)果【詳解】故選:B.5、C【解析】利用余弦定理角化邊整理可得.【詳解】由余弦定理有,整理得,故一定是直角三角形.故選:C6、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A7、B【解析】根據(jù),確定二次函數(shù)的圖象開口方向,再由二次方程的兩根為2,,寫出不等式的解集.【詳解】因為二次方程的兩根為2,,又二次函數(shù)的圖象開口向上,所以不等式的解集為或,故選:B8、A【解析】根據(jù)題意利用點斜式寫出直線方程即可.【詳解】解:過點的直線與直線平行,,即.故選:A.9、B【解析】觀察前4項可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B10、D【解析】分別求出兩曲線表示的橢圓的位置,長軸長、短軸長、離心率和焦距,比較可得答案.【詳解】曲線表示焦點在x軸上的橢圓,長軸長為10,短軸長為6,離心率為,焦距為8,曲線焦點在x軸上的橢圓,長軸長為,短軸長為,離心率為,焦距為,故選:D11、A【解析】直接求出的值即可.【詳解】解:由題得,程序框圖就是求,由于三角函數(shù)的最小正周期為,,,所以.故選:A12、B【解析】由題意可知且,構(gòu)造函數(shù),可得出,由函數(shù)的單調(diào)性可得出,利用導數(shù)求出函數(shù)的最小值,可得出關于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構(gòu)造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構(gòu)造函數(shù),其中,則.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,則,所以,,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:1514、①.②.【解析】當時,,推導出,從而數(shù)列是從第二項起,公比為的等比數(shù)列,進而能求出數(shù)列的通項公式,即可求得答案.【詳解】為數(shù)列的前項和,①時,②①②,得:,,,,數(shù)列的通項公式為.故答案為:;.15、①.②.點或點(填出其中一組即可)【解析】(1)以向量,,為基底分別表達出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點或點16、【解析】設球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設球的半徑為r,則表面積,解得,所以體積,故答案為:【點睛】本題考查已知球的表面積求體積,關鍵是求出半徑,再進行求解,考查基礎知識掌握程度,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由條件先求出通項公式,得出,再由可得出答案.(2)由(1)可知,由裂項相消法可得答案.【小問1詳解】由,則由數(shù)列是公差為的等差數(shù)列,則所以當時,當時,符合上式所以【小問2詳解】由(1)可知則18、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無極大值;(2)具體見解析;(3)具體見解析.【解析】(1)對函數(shù)求導,進而求出單調(diào)區(qū)間和極值;(2)結(jié)合(1),并代入幾個特殊點,再結(jié)合函數(shù)的變化趨勢作出圖象;(3)結(jié)合(2),采用數(shù)形結(jié)合的方法求得答案.【小問1詳解】,時,,單調(diào)遞減,時,,單調(diào)遞增,故函數(shù)在x=-1處取得極小值為,無極大值.【小問2詳解】作圖說明:由(1)可知函數(shù)先減后增,有極小值;描出極小值點,原點和點(1,e);當時,函數(shù)增加得越來越快,當時,函數(shù)越來越接近于0.【小問3詳解】結(jié)合圖象可知,若,則方程有0個解;若,則方程有2個解;若或,則方程有1個解.19、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設,,將與圓P的方程聯(lián)立得到韋達定理,再寫出直線的方程即得解.【小問1詳解】解:因為拋物線C上一點,且,所以到拋物線C的準線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】證明:由(1)知,則圓P的方程為設,,將與圓P的方程聯(lián)立,可得,則,當時,,不妨令,則,此時;當時,直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過點;綜上,直線DE過定點20、(1)答案見解析;(2).【解析】(1)求得,分、兩種情況討論,分析導數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)利用參變量分離法可得出對任意的恒成立,構(gòu)造函數(shù),其中,利用導數(shù)求出函數(shù)在上的最小值,由此可求得實數(shù)的取值范圍.【小問1詳解】解:函數(shù)的定義域為,.因為,由,可得.①當時,由可得,由可得.此時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;②當時,由可得,由可得,此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上所述,當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;當時,函數(shù)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】解:當且時,由,可得,令,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,則,.21、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯位相減法可求得結(jié)果.【小問1詳解】當時,;當時,;當時,;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.22、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是(2)時,有1個零點;或時,有2個零點;時,有3個零點.【解析】(1)求解函數(shù)的導數(shù),再運用導數(shù)求解函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)導數(shù)分析原函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川化股份合同范本
- 建材分銷協(xié)議書
- 工地測量合同范本
- 執(zhí)行實施合同范本
- 裝修發(fā)票協(xié)議書
- 內(nèi)網(wǎng)維護合同范本
- 征收協(xié)議書模板
- 意向性合同協(xié)議
- 展覽品合同范本
- 裝飾裝潢協(xié)議書
- 2025民生銀行總行資產(chǎn)經(jīng)營管理部社會招聘筆試題庫帶答案解析
- 2026年上海工程技術大學單招職業(yè)傾向性測試題庫參考答案詳解
- 2025黑龍江大興安嶺地區(qū)韓家園林業(yè)局工勤崗位人員招聘40人備考考點試題及答案解析
- 2025年陜煤澄合礦業(yè)有限公司招聘(570人)筆試備考題庫附答案解析
- 培訓師培訓TTT課程大綱
- 我國高技能人才隊伍建設的現(xiàn)狀、問題和對策研究
- 生物統(tǒng)計學期末復習題庫及答案
- 孤獨癥兒童發(fā)展評估表
- 京牌結(jié)婚過戶合同范本
- 2025年廣東省深圳市法院審判輔助人員招錄綜合素質(zhì)測試復習題庫及答案
- 2025年醫(yī)院檢驗科自查報告及整改措施
評論
0/150
提交評論