版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆福建省清流縣第二中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.82.已知橢圓的左右焦點分別為,,點B為短軸的一個端點,則的周長為()A.20 B.18C.16 D.93.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x4.在平面直角坐標(biāo)系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.55.若拋物線焦點與橢圓的右焦點重合,則的值為A. B.C. D.6.已知函數(shù),若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.7.若雙曲線一條漸近線被圓所截得的弦長為,則雙曲線的離心率是()A. B.C. D.8.過雙曲線Ω:(a>0,b>0)右焦點F作x軸的垂線,與Ω在第一象限的交點為M,且直線AM的斜率大于2,其中A為Ω的左頂點,則Ω的離心率的取值范圍為()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)9.雙曲線的漸近線的斜率是()A.1 B.C. D.10.已知點為直線上任意一點,為坐標(biāo)原點.則以為直徑的圓除過定點外還過定點()A. B.C. D.11.若執(zhí)行如圖所示的程序框圖,則輸出S的值是()A.18 B.78C.6 D.5012.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.萊昂哈德·歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的重心、垂心和外心共線.后來人們稱這條直線為該三角形的歐拉線.已知的三個頂點坐標(biāo)分別是,,,則的垂心坐標(biāo)為______,的歐拉線方程為______14.如圖,四邊形和均為正方形,它們所在的平面互相垂直,動點在線段上,、分別為、的中點.設(shè)異面直線與所成的角為,則的最大值為____15.已知三棱錐的四個頂點在球的球面上,,是邊長為正三角形,分別是的中點,,則球的體積為_________________16.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.18.(12分)在空間直角坐標(biāo)系Oxyz中,O為原點,已知點,,,設(shè)向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數(shù)k的值.19.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.20.(12分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和21.(12分)已知函數(shù),曲線y=f(x)在點(0,4)處的切線方程為(1)求a,b的值;(2)求f(x)的極大值22.(10分)已知橢圓C:經(jīng)過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D2、B【解析】根據(jù)橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B3、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.4、D【解析】利用兩點間的距離公式,將切線長的和轉(zhuǎn)化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設(shè)點P,則,即到與兩點距離之和的最小值,當(dāng)、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎(chǔ)題.5、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D6、B【解析】構(gòu)造,通過求導(dǎo),研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結(jié)合求出實數(shù)的取值范圍.【詳解】令,即,令,當(dāng)時,,,令得:或,結(jié)合,所以,令得:,結(jié)合得:,所以在處取得極大值,也是最大值,,當(dāng)時,,且,當(dāng)時,,則恒成立,單調(diào)遞增,且當(dāng)時,,當(dāng)時,,畫出的圖象,如下圖:要想有3個零點,則故選:B7、A【解析】根據(jù)(為弦長,為圓半徑,為圓心到直線的距離),求解出的關(guān)系式,結(jié)合求解出離心率的值.【詳解】取的一條漸近線,因為(為弦長,為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點睛】關(guān)鍵點點睛:解答本題的關(guān)鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長之間的關(guān)系.8、B【解析】求點A和M的坐標(biāo),進而表示斜率,可得,整理得b2>2ac+2a2,從而可解得離心率的范圍.【詳解】F(c,0),設(shè)M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【點睛】解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.9、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B10、D【解析】設(shè)垂直于直線,可知圓恒過垂足;兩條直線方程聯(lián)立可求得點坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過點,由得:,以為直徑的圓恒過定點.故選:D.11、A【解析】根據(jù)框圖逐項計算后可得正確的選項.【詳解】第一次循環(huán)前,;第二次循環(huán)前,;第三次循環(huán)前,;第四次循環(huán)前,;第五次循環(huán)前,此時滿足條件,循環(huán)結(jié)束,輸出S的值是18故選:A12、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.##(0,1.5)②.【解析】由高線聯(lián)立可得垂心,由垂心與重心可得歐拉線方程.【詳解】由,可知邊上的高所在的直線為,又,因此邊上的高所在的直線的斜率為,所以邊上的高所在的直線為:,即,所以,所以的垂心坐標(biāo)為,由重心坐標(biāo)公式可得的重心坐標(biāo)為,所以的歐拉線方程為:,化簡得.故答案為:;14、【解析】如圖所示,建立空間直角坐標(biāo)系,設(shè),,,,,由向量法可得,令,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可求得的最大值,從而可得答案【詳解】解:由題意,根據(jù)已知條件,直線AB,AD,AQ兩兩互相垂直,所以建立如圖所示空間直角坐標(biāo)系不妨設(shè),則,0,,,0,,,1,,設(shè),,,,,,,,,,,令,,則,函數(shù)在上單調(diào)遞減,時,函數(shù)取得最大值,的最大值為故答案為:15、【解析】由已知設(shè)出,,,分別在中和在中運用余弦定理表示,得到關(guān)于x與y的關(guān)系式,再在中運用勾股定理得到關(guān)于x與y的又一關(guān)系式,聯(lián)立可解得x,y,從而分析出正三棱錐是,,兩兩垂直的正三棱錐,所以三棱錐的外接球就是以為棱的正方體的外接球,再通過正方體的外接球的直徑等于正方體的體對角線的長求出球的半徑,再求出球的體積.【詳解】在中,設(shè),,,,,因為點,點分別是,的中點,所以,,在中,,在中,,整理得,因為是邊長為的正三角形,所以,又因為,所以,由,解得,所以又因為是邊長為的正三角形,所以,所以,所以,,兩兩垂直,則球為以為棱的正方體的外接球,則外接球直徑為,所以球的體積為,故答案為.【點睛】本題主要考查空間幾何體的外接球的體積,破解關(guān)鍵在于熟悉正三棱錐的結(jié)構(gòu)特征,運用解三角形的正弦定理和余弦定理得出三棱錐的棱的關(guān)系,繼而分析出正三棱錐的外接球是以正三棱錐中互相垂直的三條棱為棱的正方體的外接球,利用正方體的外接球的直徑等于正方體的體對角線的長求解更方便快捷,屬于中檔題16、3【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結(jié)果詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7==381,解得a1=3.故答案為3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點作坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,0,,,2,,,0,,,0,,設(shè)平面的一個法向量為,又,則,則可取,又,設(shè)直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因為所以點到平面的距離為,點到平面的距離為18、(1)(2)【解析】(1)由向量的坐標(biāo)先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即19、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標(biāo)原點,分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設(shè)二面角的平面角為由圖可知,20、(1)(2)【解析】(1)設(shè)等差數(shù)列公差為d,首項為a1,根據(jù)已知條件列出方程組求解a1,d,代入通項公式即可得答案;(2)根據(jù)等差、等比數(shù)列的前n項和公式,利用分組求和法即可求解【小問1詳解】解:設(shè)等差數(shù)列公差為d,首項為a1,由題意,有,解得,所以;【小問2詳解】解:,所以21、(1)a=4,b=4(2)【解析】(1)由題意得到關(guān)于的方程組,求解方程組即可求出答案.(2)結(jié)合(1)中求得的函數(shù)解析式,求導(dǎo)得到的單調(diào)性,可得當(dāng)x=-2時,函數(shù)f(x)取得極大值.【小問1詳解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8從而a=4,b=4【小問2詳解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2從而當(dāng)時,f′(x)>0;當(dāng)x∈(-2,-ln2)時,f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上單調(diào)遞增,在(-2,-ln2)上單調(diào)遞減當(dāng)x=-2時,函數(shù)f(x)取得極大值,極大值為22、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 卡通插畫黑板教師教育教學(xué)模板模板
- 2025年生態(tài)農(nóng)業(yè)認(rèn)證五年發(fā)展路徑報告
- 2025年佛山市南海區(qū)獅山加立幼兒園招聘備考題庫及一套完整答案詳解
- 2025年保定華醫(yī)中醫(yī)醫(yī)院招聘15人備考題庫完整參考答案詳解
- 湖南時空信息安全檢測服務(wù)有限公司2025年面向社會公開招聘備考題庫附答案詳解
- 松桃群希高級中學(xué)2026年招聘高中教師備考題庫(數(shù)學(xué)物理化學(xué)語文英語)及參考答案詳解一套
- 2025年江西省建工集團有限責(zé)任公司所屬企業(yè)招聘備考題庫及答案詳解一套
- 2025年城市共享單車補貼政策分析報告
- 2025年成都市泡桐樹中學(xué)教師招聘備考題庫完整答案詳解
- 2025年上海舞臺技術(shù)研究所(上海文廣演藝劇院管理事務(wù)中心)公開招聘工作人員備考題庫及答案詳解1套
- 2025年安全管理員崗位招聘面試參考題庫及參考答案
- 2025山西太原市面向勞務(wù)派遣人員招聘2人筆試歷年備考題庫附帶答案詳解試卷3套
- 道路清掃保潔服務(wù)投標(biāo)方案
- 應(yīng)對海關(guān)緝私警察面試常見問題與答題技巧
- 光伏運維合同
- 水電建設(shè)工程質(zhì)量監(jiān)督檢查大綱
- 老年病科護理組長崗位競聘
- 2025-2030中國碘化銠行業(yè)需求潛力及產(chǎn)銷規(guī)模預(yù)測報告
- 食品安全許可證管理制度
- 疫苗與冷鏈管理課件
- 2025年高級(三級)焊接設(shè)備操作工職業(yè)技能鑒定《理論知識》考試真題(后附專業(yè)解析)
評論
0/150
提交評論