2026屆福建省泉州市永春縣華僑中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁
2026屆福建省泉州市永春縣華僑中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁
2026屆福建省泉州市永春縣華僑中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁
2026屆福建省泉州市永春縣華僑中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁
2026屆福建省泉州市永春縣華僑中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆福建省泉州市永春縣華僑中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是兩個(gè)非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.設(shè),則的一個(gè)必要不充分條件為()A. B.C. D.3.如圖,在棱長為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.4.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.45.已知向量,,若與共線,則實(shí)數(shù)值為()A. B.C.1 D.26.已知函數(shù)的定義域?yàn)椋鋵?dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.7.已知函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.8.函數(shù)的圖象如圖所示,是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是()A B.C. D.9.雙曲線型自然通風(fēng)塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.10.在等差數(shù)列中,已知,則數(shù)列的前6項(xiàng)之和為()A.12 B.32C.36 D.7211.若用面積為48的矩形ABCD截某圓錐得到一個(gè)橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.12.已知是雙曲線的左、右焦點(diǎn),點(diǎn)P在C上,,則等于()A.2 B.4C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知與所在平面垂直,且,,,點(diǎn)P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______14.已知空間向量,則向量在坐標(biāo)平面上的投影向量是__________15.?dāng)?shù)列中,,,設(shè)(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項(xiàng)和;(3)若,為數(shù)列的前項(xiàng)和,求不超過的最大的整數(shù)16.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點(diǎn),點(diǎn)P是雙曲線C上的任意一點(diǎn)(不是頂點(diǎn)),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點(diǎn).若|F1F2|=6|OH|,則雙曲線C的方程為____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列各項(xiàng)均不為零,為其前項(xiàng)和,點(diǎn)在函數(shù)的圖像上.(1)求的通項(xiàng)公式;(2)若數(shù)列滿足,求的前項(xiàng)和;(3)若數(shù)列滿足,求的前項(xiàng)和的最大值、最小值.18.(12分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時(shí),證明l與C總相交;(2)m取何值時(shí),l被C截得的弦長最短?求此弦長19.(12分)已知圓M經(jīng)過原點(diǎn)和點(diǎn),且它的圓心M在直線上.(1)求圓M的方程;(2)若點(diǎn)D為圓M上的動點(diǎn),定點(diǎn),求線段CD的中點(diǎn)P的軌跡方程.20.(12分)等差數(shù)列的公差d不為0,滿足成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列與通項(xiàng)公式:(2)若,求數(shù)列的前n項(xiàng)和.21.(12分)已知.(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在處取得極值,求在上的最小值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】因?yàn)闀r(shí),夾角為鈍角或平角;而當(dāng)夾角為鈍角時(shí),成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點(diǎn):1向量的數(shù)量積;2充分必要條件2、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項(xiàng):,,,所以是的充分不必要條件,A錯(cuò)誤;B選項(xiàng):,,所以是的非充分非必要條件,B錯(cuò)誤;C選項(xiàng):,,,所以是必要不充分條件,C正確;D選項(xiàng):,,,所以是的非充分非必要條件,D錯(cuò)誤.故選:C.3、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)椋謩e為,的中點(diǎn),因?yàn)?,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)椋允卿J角,所以,在直角三角形中,,故直線到直線的距離為;故選:C4、B【解析】由兩式相除即可求公比.【詳解】設(shè)等比數(shù)列的公比為q,∵其各項(xiàng)均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.5、D【解析】根據(jù)空間向量共線有,,結(jié)合向量的坐標(biāo)即可求的值.【詳解】由題設(shè),有,,則,可得.故選:D6、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B7、A【解析】求出函數(shù)的導(dǎo)函數(shù),再求出,然后利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得:,則,而,于是得:,即,所以曲線在點(diǎn)處的切線方程為.故選:A8、A【解析】結(jié)合導(dǎo)數(shù)的幾何意義確定正確選項(xiàng).【詳解】,表示兩點(diǎn)連線斜率,表示在處切線的斜率;表示在處切線的斜率;根據(jù)圖象可知,.故選:A9、A【解析】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進(jìn)而求得雙曲線的離心率.【詳解】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷10、C【解析】利用等差數(shù)列的求和公式結(jié)合角標(biāo)和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項(xiàng)之和為:故選:C.11、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項(xiàng)判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項(xiàng)B,D由于,不符合條件,不正確.對于選項(xiàng)A,,滿足題意.對于選項(xiàng)C,不正確.故選:A.12、D【解析】根據(jù)雙曲線定義寫出,兩邊平方代入焦點(diǎn)三角形的余弦定理中即可求解【詳解】雙曲線,,所以,根據(jù)雙曲線的對稱性,可假設(shè)在第一象限,設(shè),則,所以,,在中,根據(jù)余弦定理:,即,解得:,所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】取的中點(diǎn),的中點(diǎn),以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點(diǎn),的中點(diǎn),如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個(gè)法向量,因?yàn)?,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:14、【解析】根據(jù)投影向量的知識求得正確答案.【詳解】空間向量在坐標(biāo)平面上的投影向量是.故答案為:15、(1)證明見解析;(2);(3)2021【解析】(1)將兩邊都加,證明是常數(shù)即可;(2)求出的通項(xiàng),利用錯(cuò)位相減法求解即可;(3)先求出,再求出的表達(dá)式,利用裂項(xiàng)相消法即可得解.【詳解】(1)將兩邊都加,得,而,即有,又,則,,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;(2)由(1)知,,則,,,因此,,所以;(3)由(2)知,于是得,則,因此,,所以不超過的最大的整數(shù)是202116、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點(diǎn),|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)最大值為,最小值為【解析】(1)將點(diǎn)代入函數(shù)解析再結(jié)合前和即可求解;(2)運(yùn)用錯(cuò)位相減法或分組求和法都可以求解;(3)將數(shù)列的通項(xiàng)變形為,再求和,通過分類討論從單調(diào)性上分析求解即可.【小問1詳解】因?yàn)辄c(diǎn)在函數(shù)的圖像上,所以,又?jǐn)?shù)列是等差數(shù)列,所以,即所以,;【小問2詳解】解法1:,==,解法2:,①,②①-②得,;【小問3詳解】記的前n項(xiàng)和為,則=,當(dāng)n為奇數(shù)時(shí)隨著n的增大而減小,可得,當(dāng)n為偶數(shù)時(shí)隨著n增大而增大,可得,所以的最大值為,最小值為.18、(1)證明見解析;(2)當(dāng)時(shí),l被C截得的弦長最短,最短弦長為.【解析】(1)求出直線l的定點(diǎn),進(jìn)而判斷定點(diǎn)和圓C的位置關(guān)系,最后得到答案;(2)當(dāng)圓心C到直線l的距離最大時(shí),弦長最短,進(jìn)而求出m,然后根據(jù)勾股定理求出弦長.【詳解】(1)直線l的方程可化為y+3=2m(x-4),則l過定點(diǎn)P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以點(diǎn)P在圓內(nèi),故直線l與圓C總相交(2)圓的C方程可化為:(x-3)2+(y+6)2=25,如圖所示,當(dāng)圓心C(3,-6)到直線l的距離最大時(shí),弦AB的長度最短,此時(shí)PC⊥l,又,所以直線l的斜率為,則,在直角中,|PC|=,|AC|=5,所以|AB|=.故當(dāng)時(shí),l被C截得的弦長最短,最短弦長為.19、(1).(2).【解析】(1)設(shè)圓M的方程為,由已知條件建立方程組,求解即可;(2)設(shè),,依題意得.代入圓M的方程可得點(diǎn)P的軌跡方程.【小問1詳解】解:設(shè)圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問2詳解】解:設(shè),,依題意得,得.點(diǎn)為圓M上的動點(diǎn),得,化簡得P的軌跡方程為.20、(1),(2)【解析】(1)根據(jù)等比中項(xiàng)的性質(zhì)及等差數(shù)列的通項(xiàng)公式得到方程求出公差,即可求出的通項(xiàng)公式,由,當(dāng)時(shí),求出,當(dāng)時(shí),兩式作差,即可求出;(2)由(1)可得,利用錯(cuò)位相減法求和即可;【小問1詳解】解:由已知,又,所以故解得(舍去)或∴∵①故當(dāng)時(shí),可知,∴,當(dāng)時(shí),可知②①②得∴又也滿足,故當(dāng)時(shí),都有;【小問2詳解】解:由(1)知,故③,∴④,由③④得整理得.21、(1);(2).【解析】(1)利用導(dǎo)數(shù)的幾何意義求切線的斜率,再利用點(diǎn)斜式方程即可求出切線方程;(2)根據(jù)極值點(diǎn)求出的值,根據(jù)導(dǎo)數(shù)值的正負(fù)判斷函數(shù)的單調(diào)性,即可求出最小值.【小問1詳解】∵,,∴∴∴在處的切線為,即;【小問2詳解】∵,由題可知,∴,∴單調(diào)遞增,單調(diào)遞減,∵,,∴.22、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論