版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市茶陵縣二中2026屆數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為,,焦距為,過點作軸的垂線與橢圓相交,其中一個交點為點(如圖所示),若的面積為,則橢圓的方程為()A B.C. D.2.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.113.已知是拋物線:的焦點,直線與拋物線相交于,兩點,滿足,記線段的中點到拋物線的準(zhǔn)線的距離為,則的最大值為()A. B.C. D.4.已知點,在雙曲線上,線段的中點,則()A. B.C. D.5.拋物線的準(zhǔn)線方程是A. B.C. D.6.如圖,在三棱錐中,是線段的中點,則()A. B.C. D.7.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.8.若橢圓對稱軸是坐標(biāo)軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對9.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.10.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關(guān),初行健步不為難次日腳痛減一半,六朝才得到其關(guān).要見每朝行里數(shù),請公仔細(xì)算相還.意為:某人步行到378里的要塞去,第一天走路強壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達目的地.請仔細(xì)計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.1211.已知點的坐標(biāo)為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當(dāng)取得最小值時,則點的坐標(biāo)是A.(1,) B.C. D.12.在空間直角坐標(biāo)系中,已知點M是點在坐標(biāo)平面內(nèi)的射影,則的坐標(biāo)是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人獨立地破譯一份密碼,已知各人能破譯的概率分別為,則密碼被成功破譯的概率_________14.如圖,在等腰直角中,,為半圓弧上異于,的動點,當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號).15.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個點,F(xiàn)1和F2分別是C1的左右焦點,也是C2的左右焦點,并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.16.過拋物線的焦點作傾斜角為的直線,與拋物線分別交于兩點(點在軸上方),_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不相等的零點,證明:18.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標(biāo)軸,且,兩點(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負(fù)半軸、y軸負(fù)半軸的交點,P為橢圓上在第一象限內(nèi)一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值19.(12分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(1)證明:平面;(2)求二面角的正弦值20.(12分)已知圓,點,點是圓上任意一點,線段的垂直平分線交直線于點,點的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點,動圓,且點在圓外,過點作圓的兩條切線分別交曲線于點,.(i)求證:直線的斜率為定值;(ii)若直線與交于點,且時,求直線的方程.21.(12分)已知點,橢圓:離心率為,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點.設(shè)過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由22.(10分)請分別確定滿足下列條件的直線方程(1)過點(1,0)且與直線x﹣2y﹣2=0垂直直線方程是(2)求與直線3x-4y+7=0平行,且在兩坐標(biāo)軸上截距之和為1的直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可得,令,可得,再由三角形的面積公式,解方程可得,,即可得到所求橢圓的方程【詳解】由題意可得,即,即有,令,則,可得,則,即,解得,,∴橢圓的方程為故選:A2、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.3、C【解析】設(shè),過點,分別作拋物線的準(zhǔn)線的垂線,垂足分別為,進而得,再結(jié)合余弦定理得,進而根據(jù)基本不等式求解得.【詳解】解:設(shè),過點,分別作拋物線的準(zhǔn)線的垂線,垂足分別為,則,因為點為線段中點,所以根據(jù)梯形中位線定理得點到拋物線的準(zhǔn)線的距離為,因為,所以在中,由余弦定理得,所以,又因為,所以,當(dāng)且僅當(dāng)時等號成立,所以,故.所以的最大值為.故選:C【點睛】本題考查拋物線的定義,直線與拋物線的位置關(guān)系,余弦定理,基本不等式,考查運算求解能力,是中檔題.本題解題的關(guān)鍵在于根據(jù)題意,設(shè),進而結(jié)合拋物線的定于與余弦定理得,,再求最值.4、D【解析】先根據(jù)中點弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因為的中點為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達定理得:,,則故選:D5、C【解析】根據(jù)拋物線的概念,可得準(zhǔn)線方程為6、A【解析】根據(jù)給定幾何體利用空間向量基底結(jié)合向量運算計算作答.【詳解】在三棱錐中,是線段的中點,所以:.故選:A7、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點睛】(1)本題主要考查向量的線性運算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2).8、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標(biāo)軸,則該橢圓的方程為或.故選:C.9、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點,進而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D10、C【解析】每天所走的里程構(gòu)成公比為的等比數(shù)列,設(shè)第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構(gòu)成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C11、D【解析】過作準(zhǔn)線的垂線,垂足為,則,當(dāng)且僅當(dāng)三點共線時等號成立,此時,故,所以,選D12、C【解析】點在平面內(nèi)的射影是坐標(biāo)不變,坐標(biāo)為0的點.【詳解】點在坐標(biāo)平面內(nèi)的射影為,故點M的坐標(biāo)是故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,由相互獨立事件概率的乘法公式可得密碼沒有被破譯的概率,進而由對立事件的概率性質(zhì)分析可得答案【詳解】解:根據(jù)題意,甲乙兩人能成功破譯的概率分別是,,則密碼沒有被破譯,即甲乙都沒有成功破譯密碼概率,故該密碼被成功破譯的概率故答案為:14、①②④【解析】①當(dāng)D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當(dāng)D為中點,且A,B,C,D四點共面時,連結(jié)BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點時,h有最大值;當(dāng)A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.15、【解析】先根據(jù)橢圓的方程求得焦點坐標(biāo),然后根據(jù)為正六邊形求得點的坐標(biāo),即點在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點的坐標(biāo)為:則點在雙曲線上,可得:又解得:故答案為:16、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導(dǎo)函數(shù),結(jié)合定義域及導(dǎo)數(shù)的符號確定單調(diào)區(qū)間;(2)法一:討論、時的零點情況,即可得,構(gòu)造,利用導(dǎo)數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設(shè),由零點可得,進而應(yīng)用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導(dǎo)數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域為(0,+∞),當(dāng)a=2時,,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當(dāng)a≤0時,>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個不相等的零點,當(dāng)a>0時,函數(shù)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減,因為函數(shù)有兩個不相等的零點,則,不妨設(shè),設(shè),(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調(diào)遞減,即>=0,所以,即,又,故,因為,所以,因為函數(shù)在(2a,+∞)上單調(diào)遞增,所以,即法二:不妨設(shè),由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區(qū)間(1,+∞)單調(diào)遞減,故<=0,即恒成立因此,所以.【點睛】關(guān)鍵點點睛:第二問,法一:應(yīng)用極值點偏移方法構(gòu)造,將問題轉(zhuǎn)化為在(0,2a)恒成立,法二:根據(jù)零點可得,再由分析法將問題化為證明,構(gòu)造函數(shù),綜合運用換元法、導(dǎo)數(shù)證明結(jié)論.18、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標(biāo),再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點坐標(biāo)滿足,即,直線PM:,可得,直線PN:,可得,.19、(1)證明見解析(2)【解析】(1)設(shè),線段的中點為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量和平面的一個法向量后可求二面角的余弦值.【小問1詳解】證明:設(shè),線段的中點為H,分別連接又因為G是的中點,所以因為四邊形為矩形,據(jù)菱形性質(zhì)知,O為的中點,所以,且,所以,且,所以四邊形是平行四邊形,所以又因為平面,平面,所以平面【小問2詳解】解:據(jù)四邊形是菱形的性質(zhì)知,又因為平面平面,平面,平面平面,故平面,所以以分別為x軸,y軸,以過與的交點O,且垂直于平面的直線為z軸建立空間直角坐標(biāo)系如圖所示,則有,所以設(shè)平面的一個法向量,則令,則,且,所以設(shè)平面的一個法向量,則令,則,且,所以所以,所以二面角的正弦值為20、(1)(2)(i)答案見解析(ii)或【解析】(1)通過幾何關(guān)系可知,且,由此可知點的軌跡是以點、為焦點,且實軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設(shè)點,,直線的方程為,將直線方程與雙曲線方程聯(lián)立利用韋達定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯(lián)立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據(jù)雙曲線的定義可知,點的軌跡是以點、為焦點,且實軸長為的雙曲線,即,,,則點的軌跡方程為;【小問2詳解】(i)設(shè)點,,直線的方程為,聯(lián)立得,其中,且,,,∵曲線上一點,∴,由已知條件得直線和直線關(guān)于對稱,則,即,整理得,,,,即,則或,當(dāng),直線方程為,此直線過定點,應(yīng)舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當(dāng)時,,,即,,,解得或,但是當(dāng)時,,故應(yīng)舍去,當(dāng)時,直線方程為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山東德州臨邑縣人民醫(yī)院招聘備案制工作人員15人備考核心題庫及答案解析
- 2026年湖南科技職業(yè)學(xué)院輔導(dǎo)員招聘備考題庫附答案
- 2025江蘇先科半導(dǎo)體新材料有限公司招聘11人考試核心試題及答案解析
- 2025遼寧葫蘆島市市直部分事業(yè)單位招聘高層次人才84人備考核心試題附答案解析
- 2025廣西貴港市港北區(qū)第四初級中學(xué)招募高校畢業(yè)生就業(yè)見習(xí)人員6人備考核心題庫及答案解析
- 2025廣東下半年揭陽市市直衛(wèi)生健康事業(yè)單位赴外地院校招聘工作人員27人備考核心題庫及答案解析
- 2025浙江寧波農(nóng)商發(fā)展集團有限公司招聘15人參考考試試題及答案解析
- 2025湖北武漢人才服務(wù)發(fā)展有限公司招聘政治教師派往武漢市公立職高工作2人備考核心題庫及答案解析
- 2025年下半年九江市第五人民醫(yī)院自主招聘衛(wèi)生專業(yè)技術(shù)人員7人備考題庫附答案
- 2025河南商丘梁園區(qū)招聘安全服務(wù)人員50人筆試重點題庫及答案解析
- 2025下半年貴州遵義市市直事業(yè)單位選調(diào)56人備考筆試試題及答案解析
- 2025中原農(nóng)業(yè)保險股份有限公司招聘67人備考題庫附答案
- 2025年個人所得稅贍養(yǎng)老人分?jǐn)倕f(xié)議范本下載8篇
- 2023年民航華北空管局招聘筆試真題
- DB51∕2672-2020 成都市鍋爐大氣污染物排放標(biāo)準(zhǔn)
- 《山東省建筑工程消耗量定額》解釋全集
- 高考作文寫作訓(xùn)練:“傳承古韻創(chuàng)新前行”作文閱卷細(xì)則及高分作文
- 技術(shù)賦能 融合實踐 推動區(qū)域教育高質(zhì)量發(fā)展
- 泛酸鈣在口腔科疾病中的應(yīng)用研究
- 診所危險化學(xué)物品應(yīng)急預(yù)案
- 潔凈區(qū)管理及無菌操作知識培訓(xùn)課件
評論
0/150
提交評論