湖南省衡陽市石鼓區(qū)2024-2025學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
湖南省衡陽市石鼓區(qū)2024-2025學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
湖南省衡陽市石鼓區(qū)2024-2025學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
湖南省衡陽市石鼓區(qū)2024-2025學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
湖南省衡陽市石鼓區(qū)2024-2025學(xué)年高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省衡陽市石鼓區(qū)2024-2025學(xué)年高三第二次模擬考試數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則()A. B. C. D.2.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個3.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知函數(shù),若,則的值等于()A. B. C. D.5.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.6.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg7.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.8.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.9.木匠師傅對一個圓錐形木件進(jìn)行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.10.已知三棱柱()A. B. C. D.11.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的首項,函數(shù)在上有唯一零點,則數(shù)列|的前項和__________.14.如圖,從一個邊長為的正三角形紙片的三個角上,沿圖中虛線剪出三個全等的四邊形,余下部分再以虛線為折痕折起,恰好圍成一個缺少上底的正三棱柱,而剪出的三個相同的四邊形恰好拼成這個正三棱柱的上底,則所得正三棱柱的體積為______.15.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.16.成都市某次高三統(tǒng)考,成績X經(jīng)統(tǒng)計分析,近似服從正態(tài)分布,且,若該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點,單位圓與角終邊的交點為,過作平行于軸的直線,設(shè)與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.18.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.19.(12分)在平面直角坐標(biāo)系中,為直線上動點,過點作拋物線:的兩條切線,,切點分別為,,為的中點.(1)證明:軸;(2)直線是否恒過定點?若是,求出這個定點的坐標(biāo);若不是,請說明理由.20.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.21.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.22.(10分)已知拋物線的焦點為,直線交于兩點(異于坐標(biāo)原點O).(1)若直線過點,,求的方程;(2)當(dāng)時,判斷直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時取等號,即.故選:A.本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運算能力和數(shù)學(xué)建模能力,屬于較難題.2.B【解析】

根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B本題考查集合的運算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.3.A【解析】

求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達(dá)式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當(dāng)時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.4.B【解析】

由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關(guān)于原點對稱時有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)5.C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達(dá)式,在中,可以計算出的一個表達(dá)式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.6.D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.7.D【解析】

根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點情況,本題屬于基礎(chǔ)題.8.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項.點睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.9.C【解析】

由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.本題考查了三視圖還原幾何體及體積求解問題,考查了學(xué)生空間想象,數(shù)學(xué)運算能力,難度一般.10.C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=11.B【解析】

先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力和邏輯推理能力,屬于中檔題.12.B【解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯誤.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由函數(shù)為偶函數(shù),可得唯一零點為,代入可得數(shù)列的遞推關(guān)系式,再進(jìn)行配湊轉(zhuǎn)換為等比數(shù)列,最后運用分部求和可得答案.【詳解】因為為偶函數(shù),在上有唯一零點,所以,∴,∴,∴為首項為2,公比為2的等比數(shù)列.所以,.故答案為:本題主要考查了函數(shù)的奇偶性和函數(shù)的零點,同時也考查了由遞推關(guān)系式求數(shù)列的通項,考查了數(shù)列的分部求和,屬于中檔題.14.1【解析】

由題意得正三棱柱底面邊長6,高為,由此能求出所得正三棱柱的體積.【詳解】如圖,作,交于,,由題意得正三棱柱底面邊長,高為,所得正三棱柱的體積為:.故答案為:1.本題考查立體幾何中的翻折問題、正三棱柱體積的求法、三棱柱的結(jié)構(gòu)特征等基礎(chǔ)知識,考查空間想象能力、運算求解能力,求解時注意翻折前后的不變量.15.答案不唯一,如【解析】

根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個在上不是單調(diào)遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎(chǔ)題.16..【解析】

根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合求得,即可得解.【詳解】根據(jù)正態(tài)分布,且,所以故該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為.故答案為:.此題考查正態(tài)分布密度曲線性質(zhì)的理解辨析,根據(jù)曲線的對稱性求解概率,根據(jù)總?cè)藬?shù)求解成績大于114的人數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因為,,所以,,所以函數(shù)的最小正周期為.(2)因為,所以,所以,故函數(shù)在區(qū)間上的值域為.本題考查正弦型函數(shù)的周期和值域,運用到向量的坐標(biāo)運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.18.(1)證明見解析(2)【解析】

(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點坐標(biāo)為,,,所以,,設(shè)平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.19.(1)見解析(2)直線過定點.【解析】

(1)設(shè)出兩點的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,設(shè)出點坐標(biāo)并代入切線的方程,同理將點坐標(biāo)代入切線的方程,利用韋達(dá)定理求得線段中點的橫坐標(biāo),由此判斷出軸.(2)求得點的縱坐標(biāo),由此求得點坐標(biāo),求得直線的斜率,由此求得直線的方程,化簡后可得直線過定點.【詳解】(1)設(shè)切點,,,∴切線的斜率為,切線:,設(shè),則有,化簡得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點.本小題主要考查直線和拋物線的位置關(guān)系,考查直線過定點問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20.(1)(2)(i)(ii)分布列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論