上海昆明學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第1頁
上海昆明學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第2頁
上海昆明學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第3頁
上海昆明學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第4頁
上海昆明學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海昆明學(xué)校八年級上冊壓軸題數(shù)學(xué)模擬試卷含詳細(xì)答案一、壓軸題1.如圖(1),AB=4,AC⊥AB,BD⊥AB,AC=BD=3.點(diǎn)P在線段AB上以1的速度由點(diǎn)A向點(diǎn)B運(yùn)動,同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動.它們運(yùn)動的時(shí)間為(s).(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,當(dāng)=1時(shí),△ACP與△BPQ是否全等,請說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動速度為,是否存在實(shí)數(shù),使得△ACP與△BPQ全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.2.已知,在平面直角坐標(biāo)系中,,,C為AB的中點(diǎn),P是線段AB上一動點(diǎn),D是線段OA上一點(diǎn),且,于E.(1)求的度數(shù);(2)當(dāng)點(diǎn)P運(yùn)動時(shí),PE的值是否變化?若變化,說明理由;若不變,請求PE的值.(3)若,求點(diǎn)D的坐標(biāo).3.如圖1,在等邊△ABC中,E、D兩點(diǎn)分別在邊AB、BC上,BE=CD,AD、CE相交于點(diǎn)F.(1)求∠AFE的度數(shù);(2)過點(diǎn)A作AH⊥CE于H,求證:2FH+FD=CE;(3)如圖2,延長CE至點(diǎn)P,連接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以過點(diǎn)A作∠KAF=60°,AK交PC于點(diǎn)K,連接KB)4.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點(diǎn)G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點(diǎn)D,分別交BC、BM于點(diǎn)E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點(diǎn)E為BC上一點(diǎn),AE交BM于點(diǎn)F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.5.閱讀下面材料,完成(1)-(3)題.?dāng)?shù)學(xué)課上,老師出示了這樣一道題:如圖1,已知等腰△ABC中,AB=AC,AD為BC邊上的中線,以AB為邊向AB左側(cè)作等邊△ABE,直線CE與直線AD交于點(diǎn)F.請?zhí)骄烤€段EF、AF、DF之間的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現(xiàn)∠DFC的度數(shù)可以求出來.”小強(qiáng):“通過觀察和度量,發(fā)現(xiàn)線段DF和CF之間存在某種數(shù)量關(guān)系.”小偉:“通過做輔助線構(gòu)造全等三角形,就可以將問題解決.”......老師:“若以AB為邊向AB右側(cè)作等邊△ABE,其它條件均不改變,請?jiān)趫D2中補(bǔ)全圖形,探究線段EF、AF、DF三者的數(shù)量關(guān)系,并證明你的結(jié)論.”(1)求∠DFC的度數(shù);(2)在圖1中探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明;(3)在圖2中補(bǔ)全圖形,探究線段EF、AF、DF之間的數(shù)量關(guān)系,并證明.6.(1)填空①把一張長方形的紙片按如圖①所示的方式折疊,,為折痕,折疊后的點(diǎn)落在或的延長線上,那么的度數(shù)是________;②把一張長方形的紙片按如圖②所示的方式折疊,點(diǎn)與點(diǎn)重合,,為折痕,折疊后的點(diǎn)落在或的延長線上,那么的度數(shù)是_______.(2)解答:①把一張長方形的紙片按如圖③所示的方式折疊,,為折痕,折疊后的點(diǎn)落在或的延長線上左側(cè),且,求的度數(shù);②把一張長方形的紙片按如圖④所示的方式折疊,點(diǎn)與點(diǎn)重合,,為折痕,折疊后的點(diǎn)落在或的延長線右側(cè),且,求的度數(shù).(3)探究:把一張四邊形的紙片按如圖⑤所示的方式折疊,,為折痕,設(shè),,,求,,之間的數(shù)量關(guān)系.7.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點(diǎn),分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)在外部,點(diǎn)在內(nèi)部時(shí),求證:.(深入研究)(3)如圖③,和都是等邊三角形,點(diǎn),,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關(guān)系為__________.(4)如圖④,和都是等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關(guān)系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連結(jié)、.當(dāng),時(shí),在旋轉(zhuǎn)過程中,與的面積和的最大值為__________.8.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若∠B=30°,則∠ACD的度數(shù)是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內(nèi)部,點(diǎn)A、B分別在CM、CN上,分別過點(diǎn)A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數(shù);應(yīng)用:如圖③,點(diǎn)A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內(nèi)部,點(diǎn)D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.9.如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對稱.(1)求點(diǎn)的坐標(biāo);(2)動點(diǎn)以每秒2個(gè)單位長度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動,設(shè)運(yùn)動時(shí)間為秒,點(diǎn)到直線的距離的長為,求與的關(guān)系式;(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長.10.已知:中,過B點(diǎn)作BE⊥AD,.(1)如圖1,點(diǎn)在的延長線上,連,作于,交于點(diǎn).求證:;(2)如圖2,點(diǎn)在線段上,連,過作,且,連交于,連,問與有何數(shù)量關(guān)系,并加以證明;(3)如圖3,點(diǎn)在CB延長線上,且,連接、的延長線交于點(diǎn),若,請直接寫出的值.11.對定義一種新運(yùn)算,規(guī)定:(其中均為非零常數(shù)).例如:.(1)已知.①求的值;②若關(guān)于的不等式組恰好有3個(gè)整數(shù)解,求的取值范圍;(2)當(dāng)時(shí),對任意有理數(shù)都成立,請直接寫出滿足的關(guān)系式.學(xué)習(xí)參考:①,即單項(xiàng)式乘以多項(xiàng)式就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加;②,即多項(xiàng)式乘以多項(xiàng)式就是用一個(gè)多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的結(jié)果相加.12.在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由A向B和由C向A爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動,經(jīng)過t分鐘后,它們分別爬行到D、E處,請問:(1)如圖1,在爬行過程中,CD和BE始終相等嗎,請證明?(2)如果將原題中的“由A向B和由C向A爬行”,改為“沿著AB和CA的延長線爬行”,EB與CD交于點(diǎn)Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;(3)如果將原題中“由C向A爬行”改為“沿著BC的延長線爬行,連接DE交AC于F”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF13.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=60°,則∠1+∠2=;(2)若點(diǎn)P在線段AB上運(yùn)動,如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為;(3)若點(diǎn)P運(yùn)動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由;(4)若點(diǎn)P運(yùn)動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.14.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過點(diǎn)C,過點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長;(2)如圖2,點(diǎn)M以3個(gè)單位長度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動,到終點(diǎn)A,點(diǎn)N以8個(gè)單位長度/秒的速度從點(diǎn)B出發(fā)沿著線BC—CA運(yùn)動,到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,過點(diǎn)M作PM⊥DE于點(diǎn)P,過點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線段CA上時(shí),用含有t的代數(shù)式表示線段CN的長度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.15.在初中數(shù)學(xué)學(xué)習(xí)階段,我們常常會利用一些變形技巧來簡化式子,解答問題.材料一:在解決某些分式問題時(shí),倒數(shù)法是常用的變形技巧之一,所謂倒數(shù)法,即把式子變成其倒數(shù)形式,從而運(yùn)用約分化簡,以達(dá)到計(jì)算目的.例:已知:,求代數(shù)式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解決某些連等式問題時(shí),通??梢砸?yún)?shù)“k”,將連等式變成幾個(gè)值為k的等式,這樣就可以通過適當(dāng)變形解決問題.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)則根據(jù)材料回答問題:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.16.如圖,在中,為的中點(diǎn),,.動點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動;同時(shí)動點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動,運(yùn)動時(shí)間是.(1)在運(yùn)動過程中,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),求出的值;(2)在運(yùn)動過程中,當(dāng)時(shí),求出的值;(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請說明理由.17.(1)如圖1,和都是等邊三角形,且,,三點(diǎn)在一條直線上,連接,相交于點(diǎn),求證:.(2)如圖2,在中,若,分別以,和為邊在外部作等邊,等邊,等邊,連接、、恰交于點(diǎn).①求證:;②如圖2,在(2)的條件下,試猜想,,與存在怎樣的數(shù)量關(guān)系,并說明理由.18.已知在中,,點(diǎn)在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當(dāng)點(diǎn)在上時(shí),求度數(shù);(3)將在直線上平移,當(dāng)以為頂點(diǎn)的三角形是直角三角形時(shí),直接寫出度數(shù).19.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.20.在等腰中,,為邊上的高,點(diǎn)在的外部且,,連接交直線于點(diǎn),連接.(1)如圖①,當(dāng)時(shí),求證:;(2)如圖②,當(dāng)時(shí),求的度數(shù);(3)如圖③,當(dāng)時(shí),求證:.【參考答案】***試卷處理標(biāo)記,請不要刪除一、壓軸題1.(1)全等,垂直,理由詳見解析;(2)存在,或【解析】【分析】(1)在t=1的條件下,找出條件判定△ACP和△BPQ全等,再根據(jù)全等三角形的性質(zhì)和直角三角形的兩個(gè)銳角互余的性質(zhì),可證∠CPQ=90°,即可判斷線段PC和線段PQ的位置關(guān)系;(2)本題主要在動點(diǎn)的條件下,分情況討論,利用三角形全等時(shí)對應(yīng)邊相等的性質(zhì)進(jìn)行解答即可.【詳解】(1)當(dāng)t=1時(shí),AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90*.∴∠CPQ=90°,即線段PC與線段PQ垂直;(2)①若△ACP≌△BPQ,則AC=BP,AP=BQ,解得;②若△ACP≌△BQP,則AC=BQ,AP=BP,解得:綜上所述,存在或使得△ACP與△BPQ全等.【點(diǎn)睛】本題主要考查三角形全等與動點(diǎn)問題,熟練掌握三角形全等的性質(zhì)與判定定理,是解決本題的關(guān)鍵.2.(1)45°;(2)PE的值不變,PE=4,理由見詳解;(3)D(,0).【解析】【分析】(1)根據(jù),,得△AOB為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì),即可求出∠OAB的度數(shù);(2)根據(jù)等腰直角三角形的性質(zhì)得到∠AOC=∠BOC=45°,OC⊥AB,再證明△POC≌△DPE,根據(jù)全等三角形的性質(zhì)得到OC=PE,即可得到答案;(3)證明△POB≌△DPA,得到PA=OB=,DA=PB,進(jìn)而得OD的值,即可求出點(diǎn)D的坐標(biāo).【詳解】(1),,∴OA=OB=,∵∠AOB=90°,∴△AOB為等腰直角三角形,∴∠OAB=45°;(2)PE的值不變,理由如下:∵△AOB為等腰直角三角形,C為AB的中點(diǎn),∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是線段OA上一點(diǎn),∴點(diǎn)P在線段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC?△DPE(AAS),∴OC=PE,∵OC=AB=××=4,∴PE=4;(3)∵OP=PD,∴∠POD=∠PDO=(180°?45°)÷2=67.5°,∴∠APD=∠PDO?∠A=22.5°,∠BOP=90°?∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,∴△POB≌△DPA(AAS),∴PA=OB=,DA=PB,∴DA=PB=×-=8-,∴OD=OA?DA=-(8-)=,∴點(diǎn)D的坐標(biāo)為(,0).【點(diǎn)睛】本題主要考查等腰直角三角形的性質(zhì),三角形全等的判定與性質(zhì)定理,圖形與坐標(biāo),掌握等腰直角三角形的性質(zhì),是解題的關(guān)鍵.3.(1)∠AFE=60°;(2)見解析;(3)【解析】【分析】(1)通過證明得到對應(yīng)角相等,等量代換推導(dǎo)出;(2)由(1)得到,則在中利用30°所對的直角邊等于斜邊的一半,等量代換可得;(3)通過在PF上取一點(diǎn)K使得KF=AF,作輔助線證明和全等,利用對應(yīng)邊相等,等量代換得到比值.(通過將順時(shí)針旋轉(zhuǎn)60°也是一種思路.)【詳解】(1)解:如圖1中.∵為等邊三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在和中,,∴(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)證明:如圖1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一點(diǎn)K使得KF=AF,連接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK為等邊三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在和中,,∴(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴,∴,∵∴.【點(diǎn)睛】掌握等邊三角形、直角三角形的性質(zhì),及三角形全等的判定通過一定等量代換為本題的關(guān)鍵.4.(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識,解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.5.(1)60°;(2)EF=AF+FC,證明見解析;(3)AF=EF+2DF,證明見解析.【解析】【分析】(1)可設(shè)∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根據(jù)三角形內(nèi)角和可得2α+60+2β=180°,從而有α+β=60°,即可得出∠DFC的度數(shù);(2)在EC上截取EG=CF,連接AG,證明△AEG≌△ACF,然后再證明△AFG為等邊三角形,從而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,連接BG,BF,證明方法類似(2),先證明△ABG≌△EBF,再證明△BFG為等邊三角形,最后可得出結(jié)論.【詳解】解:(1)∵AB=AC,AD為BC邊上的中線,∴可設(shè)∠BAD=∠CAD=α,又△ABE為等邊三角形,∴AE=AB=AC,∠EAB=60°,∴可設(shè)∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,證明如下:∵AB=AC,AD為BC邊上的中線,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,則∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,連接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG為等邊三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)補(bǔ)全圖形如圖所示,結(jié)論:AF=EF+2DF.證明如下:同(1)可設(shè)∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE為等邊三角形,∴∠ABE=∠AFC=60°,∴由8字圖可得:∠BAD=∠BEF,在AF上截取AG=EF,連接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG為等邊三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解決問題的關(guān)鍵是常用輔助線構(gòu)造全等三角形,屬于中考??碱}型.6.,;,;,.【解析】【分析】(1)①如圖①知,得可求出解.②由圖②知得可求出解.(2)①由圖③折疊知,可推出,即可求出解.②由圖④中折疊知,可推出,即可求出解.(3)如圖⑤-1、⑤-2中分別由折疊可知,、,即可求得、.【詳解】解:(1)①如圖①中,,,,故答案為.②如圖②中,,,故答案為.(2)①如圖③中由折疊可知,,,,,;②如圖④中根據(jù)折疊可知,,,,,,;(3)如圖⑤-1中,由折疊可知,,;如圖⑤-2中,由折疊可知,,.【點(diǎn)睛】本題考查了圖形的變換中折疊屬全等變換,圖形的角度及邊長不變及一些角度的計(jì)算問題,突出考查學(xué)生的觀察能力、思維能力以及動手操作能力,本題是代數(shù)、幾何知識的綜合運(yùn)用典型題目.7.(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達(dá)到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過程中,AC始終保持不變,∴要△ADC面積最大,∴點(diǎn)D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達(dá)到的最大為2+×AC×AD=5+2=7,故答案為7.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.8.探究:30;(2)拓展:20°;(3)應(yīng)用:120【解析】【分析】(1)利用直角三角形的性質(zhì)依次求出∠A,∠ACD即可;(2)利用直角三角形的性質(zhì)直接計(jì)算得出即可;(3)利用三角形的外角的性質(zhì)得出結(jié)論,直接轉(zhuǎn)化即可得出結(jié)論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點(diǎn)睛】此題是三角形的綜合題,主要考查了直角三角形的性質(zhì),三角形的外角的性質(zhì),垂直的定義,解本題的關(guān)鍵是充分利用直角三角形的性質(zhì):兩銳角互余,是一道比較簡單的綜合題.9.(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標(biāo)系中點(diǎn)的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點(diǎn)、關(guān)于軸對稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點(diǎn)C的坐標(biāo)為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點(diǎn)到的距離為,∴,∴,∴,延長交于點(diǎn),過點(diǎn)作軸于點(diǎn),連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點(diǎn)睛】本題是三角形綜合題,涉及的知識有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運(yùn)用面積法求線段的長是解本題的關(guān)鍵.10.(1)見詳解,(2),證明見詳解,(3).【解析】【分析】(1)欲證明,只要證明即可;(2)結(jié)論:.如圖2中,作于.只要證明,推出,,由,推出即可解決問題;(3)利用(2)中結(jié)論即可解決問題;【詳解】(1)證明:如圖1中,于,,,,,(AAS),.(2)結(jié)論:.理由:如圖2中,作于.,,,,,,,,,,,,,,,.(3)如圖3中,作于交AC延長線于.,,,,,,,,,,,,,,,.,設(shè),則,,.【點(diǎn)睛】本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.另外對于類似連續(xù)幾步的綜合題,一般前一步為后一步提供解題的條件或方法.11.(1)①;②42≤a<54;(2)m=2n【解析】【分析】(1)①構(gòu)建方程組即可解決問題;②根據(jù)不等式即可解決問題;(2)利用恒等式的性質(zhì),根據(jù)關(guān)系式即可解決問題.【詳解】解:(1)①由題意得,解得,②由題意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3個(gè)整數(shù)解,∴2≤<3.∴42≤a<54;(2)由題意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵對任意有理數(shù)x,y都成立,∴m=2n.【點(diǎn)睛】本題考查一元一次不等式、二元一次方程組、恒等式等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.12.(1)相等,證明見解析;(2)證明見解析;(3)證明見解析.【解析】【分析】(1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;(2)先證明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如圖3,過點(diǎn)D作DG∥BC交AC于點(diǎn)G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進(jìn)而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.【詳解】(1)解:CD和BE始終相等,理由如下:如圖1,AB=BC=CA,兩只蝸牛速度相同,且同時(shí)出發(fā),∴CE=AD,∠A=∠BCE=60°在△ACD與△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始終相等;(2)證明:根據(jù)題意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等邊三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行過程中,DF始終等于EF是正確的,理由如下:如圖,過點(diǎn)D作DG∥BC交AC于點(diǎn)G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG為等邊三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【點(diǎn)睛】本題主要考查了全等三角形的判定與性質(zhì)和等邊三角形的性質(zhì);題弄懂題中所給的信息,再根據(jù)所提供的思路尋找證明條件是解答本題的關(guān)鍵.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由詳見解析;(4)∠2=90°+∠1-α,理由詳見解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四邊形的內(nèi)角和即可;(2)同(1)方法即可;(3)利用平角的定義和三角形的內(nèi)角和即可得出結(jié)論;(4)利用三角形的內(nèi)角和和外角的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內(nèi)角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案為:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根據(jù)四邊形的內(nèi)角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案為:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如圖3,設(shè)DP與BE的交點(diǎn)為F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如圖4,設(shè)PE與AC的交點(diǎn)為G,∵∠PGD=∠EGC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α.【點(diǎn)睛】此題是三角形綜合題,主要考查了四邊形的內(nèi)角和,三角形的內(nèi)角和,三角形的外角的性質(zhì),平角的定義,解本題的關(guān)鍵是將∠1,∠2,α轉(zhuǎn)化到一個(gè)三角形或四邊形中,是一道比較簡單的中考常考題.14.(1)①證明見解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類討論等知識;本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.15.(1)5;(2);(3)【解析】【分析】(1)仿照材料一,取倒數(shù),再約分,利用等式的性質(zhì)求解即可;(2)仿照材料二,設(shè)===k(k≠0),則a=5k,b=2k,c=3k,代入所求式子即可;(3)本題介紹兩種解法:解法一:(3)解法一:設(shè)===(k≠0),化簡得:①,②,③,相加變形可得x、y、z的代入=中,可得k的值,從而得結(jié)論;解法二:取倒數(shù)得:==,拆項(xiàng)得,從而得x=,z=,代入已知可得結(jié)論.【詳解】解:(1)∵=,∴=4,∴x﹣1+=4,∴x+=5;(2)∵設(shè)===k(k≠0),則a=5k,b=2k,c=3k,∴===;(3)解法一:設(shè)===(k≠0),∴①,②,③,①+②+③得:2()=3k,=k④,④﹣①得:=k,④﹣②得:,④﹣③得:k,∴x=,y=,z=代入=中,得:=,,k=4,∴x=,y=,z=,∴xyz===;解法二:∵,∴,∴,∴,∴,將其代入中得:==,y=,∴x=,z==,∴xyz==.【點(diǎn)睛】本題考查了以新運(yùn)算的方式求一個(gè)式子的值,題目中涉及了求一個(gè)數(shù)的倒數(shù),約分,等式的基本性質(zhì),求代數(shù)式的值,解決本題的關(guān)鍵是正確理解新運(yùn)算的內(nèi)涵,確定一個(gè)數(shù)的倒數(shù)并能夠根據(jù)等式的基本性質(zhì)將原式變?yōu)槟軌蜻M(jìn)一步運(yùn)算的式子.16.(1)時(shí),點(diǎn)位于線段的垂直平分線上;(2);(3)不存在,理由見解析.【解析】【分析】(1)根據(jù)題意求出BP,CQ,結(jié)合圖形用含t的代數(shù)式表示CP的長度,根據(jù)線段垂直平分線的性質(zhì)得到CP=CQ,列式計(jì)算即可;(2)根據(jù)全等三角形的對應(yīng)邊相等列式計(jì)算;(3)根據(jù)全等三角形的對應(yīng)邊相等列式計(jì)算,判斷即可.【詳解】解:(1)由題意得,則,當(dāng)點(diǎn)位于線段的垂直平分線上時(shí),,∴,解得,,則當(dāng)時(shí),點(diǎn)位于線段的垂直平分線上;(2)∵為的中點(diǎn),,∴,∵,∴,∴,解得,,則當(dāng)時(shí),;(3)不存在,∵,∴,則解得,,,∴不存在某一時(shí)刻,使.【點(diǎn)睛】本題考查的是幾何動點(diǎn)運(yùn)動問題、全等三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì),掌握全等三角形的對應(yīng)邊相等是解題的關(guān)鍵.17.(1)詳見解析;(2)①詳見解析;②,理由詳見解析【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)得出BC=AC,CE=CD,∠ACB=∠DCE=60°,進(jìn)而得出∠BCE=∠ACD,判斷出(SAS),即可得出結(jié)論;(2)①同(1)的方法判斷出(SAS),(SAS),即可得出結(jié)論;②先判斷出∠APB=60°,∠APC=60°,在PE上取一點(diǎn)M,使PM=PC,證明是等邊三角形,進(jìn)而判斷出(SAS),即可得出結(jié)論.【詳解】(1)證明:∵和都是等邊三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,∴(SAS),∴BE=AD;(2)①證明:∵和是等邊三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴(SAS),∴AD=BE,同理:(SAS),∴AD=CF,即AD=BE=CF;②解:結(jié)論:PB+PC+PD=BE,理由:如圖2,AD與BC的交點(diǎn)記作點(diǎn)Q,則∠AQC=∠BQP,由①知,,∴∠CAD=∠CBE,在中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∠CPD=120°,在PE上取一點(diǎn)M,使PM=PC,∴是等邊三角形,∴,∠PCM=∠CMP=60°,∴∠CME=120°=∠CPD,∵是等邊三角形,∴CD=CE,∠DCE=60°=∠PCM,∴∠PCD=∠MCE,∴(SAS),∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD.【點(diǎn)睛】此題是三角形綜合題,主要考查了三角形的內(nèi)角和定理,等邊三角形的性質(zhì)和判定,全等三角形的判定和性質(zhì),構(gòu)造出全等三角形是解本題的關(guān)鍵.18.(1)60°;(2)15°;(3)30°或15°【解析】【分析】(1)利用兩直線平行,同旁內(nèi)角互補(bǔ),得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當(dāng)時(shí),如圖3,由(1)知,,;當(dāng)時(shí),如圖4,,點(diǎn),重合,,,由(1)知,,,即當(dāng)以、、為頂點(diǎn)的三角形是直角三角形時(shí),度數(shù)為或.【點(diǎn)睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計(jì)算,求出是解本題的關(guān)鍵.19.(1)①70;②∠F=∠BED,證明見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論