版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆安徽省皖北名校聯(lián)盟高三上數(shù)學(xué)期末達標(biāo)測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.12.若實數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.03.已知全集,則集合的子集個數(shù)為()A. B. C. D.4.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.5.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.6.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則的值為()A.2 B.3 C.4 D.7.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+18.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.39.函數(shù)的圖象大致為()A. B.C. D.10.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.11.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③12.已知復(fù)數(shù),則的虛部是()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對的邊分別是,若,,則__________.14.若存在直線l與函數(shù)及的圖象都相切,則實數(shù)的最小值為___________.15.設(shè)O為坐標(biāo)原點,,若點B(x,y)滿足,則的最大值是__________.16.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標(biāo)原點,為橢圓的右頂點,求四邊形面積的最大值.18.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.19.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.20.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.21.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.22.(10分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經(jīng)過原點的直線與交于兩點,直線的斜率都存在,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由題意得到關(guān)于的等式,結(jié)合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.2、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【點睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.3、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題4、C【解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.5、B【解析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點,使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.6、B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關(guān)于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎(chǔ)題.7、C【解析】
首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時,等式左端=1+1+…+k1,當(dāng)n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./8、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時,,滿足題意,②當(dāng)時,,,,,故不恒成立,③當(dāng)時,設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.9、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.10、B【解析】
選B.考點:圓心坐標(biāo)11、B【解析】
由題意,可設(shè)直線的方程為,利用韋達定理判斷第一個結(jié)論;將代入拋物線的方程可得,,從而,,進而判斷第二個結(jié)論;設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.12、C【解析】
化簡復(fù)數(shù),分子分母同時乘以,進而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.14、【解析】
設(shè)直線l與函數(shù)及的圖象分別相切于,,因為,所以函數(shù)的圖象在點處的切線方程為,即,因為,所以函數(shù)的圖象在點處的切線方程為,即,因為存在直線l與函數(shù)及的圖象都相切,所以,所以,令,設(shè),則,當(dāng)時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增,所以,所以實數(shù)的最小值為.15、【解析】,可行域如圖,直線與圓相切時取最大值,由16、【解析】
先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:【點睛】考查雙曲線的離心率的求法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值.【解析】
(1)根據(jù)通徑和即可求(2)設(shè)直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設(shè)直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當(dāng)且僅當(dāng),即時取得等號,即四邊形面積的最大值.【點睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.18、(1),(2)【解析】
試題分析:利用將極坐標(biāo)方程化為直角坐標(biāo)方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設(shè)點P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標(biāo)方程為x+y=1.設(shè)點P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標(biāo)方程化為直角坐標(biāo)方程,點到直線距離公式19、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎(chǔ)題.20、(1)見解析;(2)見解析【解析】
(1)根據(jù),分別是,的中點,即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點,證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時要認真審題,注意空間思維能力的培養(yǎng),中檔題.21、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,,∴,∴的極坐標(biāo)方程為,把
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中央統(tǒng)戰(zhàn)部直屬事業(yè)單位2026年度應(yīng)屆高校畢業(yè)生公開招聘筆試模擬試題及答案解析
- 2026年公安部第一研究所公開招聘預(yù)報名公安部第一研究所備考題庫及參考答案詳解一套
- 2026年南京航空航天大學(xué)人力資源部黨委教師工作部國際前沿科學(xué)研究院科研助理招聘備考題庫及答案詳解參考
- 2026年興業(yè)銀行合肥分行社會招聘備考題庫及參考答案詳解1套
- 2026年建甌市衛(wèi)生健康局下屬事業(yè)單位赴福建中醫(yī)藥大學(xué)公開招聘緊缺急需專業(yè)人員10人備考題庫及答案詳解參考
- 2026年富寧縣財政局關(guān)于公開招聘編外人員的備考題庫有答案詳解
- 2026年固鎮(zhèn)縣司法局選聘專職人民調(diào)解員16人備考題庫完整答案詳解
- 2026年中材人工晶體研究院有限公司招聘備考題庫及一套答案詳解
- 2026年中國社會科學(xué)院亞太與全球戰(zhàn)略研究院公開招聘管理人員備考題庫及1套參考答案詳解
- 2026年【招聘備考題庫】江蘇長江商業(yè)銀行無錫分行招聘備考題庫及完整答案詳解一套
- 2026年大連職業(yè)技術(shù)學(xué)院單招職業(yè)技能筆試參考題庫帶答案解析
- 河南省開封市2026屆高三年級第一次質(zhì)量檢測歷史試題卷+答案
- 員工通勤安全培訓(xùn)課件
- (自2026年1月1日起施行)《增值稅法實施條例》的重要變化解讀
- 2025年游戲陪玩分成協(xié)議
- 全國秸稈綜合利用重點縣秸稈還田監(jiān)測工作方案
- 2026年內(nèi)蒙古化工職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試參考題庫及答案解析
- 國家事業(yè)單位招聘2024國家水利部小浪底水利樞紐管理中心招聘事業(yè)單位人員擬聘用人員筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 核生化應(yīng)急救援中心火災(zāi)預(yù)案
- 25數(shù)五上數(shù)學(xué)人教版期末押題卷5套
- 2026年遼寧金融職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案詳解
評論
0/150
提交評論