版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河南省周口市扶溝縣包屯高中高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面的一個(gè)法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥2.已知函數(shù),則曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積是()A B.C. D.3.如圖,在平行六面體中,M為與的交點(diǎn),若,,,則下列向量中與相等的向量是()A. B.C. D.4.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.函數(shù)極小值為()A. B.C. D.6.我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.17.直線被橢圓截得的弦長(zhǎng)是A. B.C. D.8.高二某班共有60名學(xué)生,其中女生有20名,“三好學(xué)生”人數(shù)是全班人數(shù)的,且“三好學(xué)生”中女生占一半.現(xiàn)從該班學(xué)生中任選1人參加座談會(huì),則在已知沒有選上女生的條件下,選上的學(xué)生是“三好學(xué)生”的概率為()A. B.C. D.9.已知命題是真命題,那么的取值范圍是()A. B.C. D.10.在等差數(shù)列中,若的值是A.15 B.16C.17 D.1811.已知a,b為正實(shí)數(shù),且,則的最小值為()A.1 B.2C.4 D.612.在等腰中,在線段斜邊上任取一點(diǎn),則線段的長(zhǎng)度大于的長(zhǎng)度的概率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是側(cè)面BCC1B1上的動(dòng)點(diǎn),且AP⊥BD1,記點(diǎn)P到平面ABCD的距離為d,則d的最大值為____________.14.展開式的常數(shù)項(xiàng)是________15.已知圓,若圓的過點(diǎn)的三條弦的長(zhǎng),,構(gòu)成等差數(shù)列,則該數(shù)列的公差的最大值是______.16.已知空間向量,,且,則值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線焦點(diǎn)是,斜率為的直線l經(jīng)過F且與拋物線相交于A、B兩點(diǎn)(1)求該拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;(2)求線段AB的長(zhǎng)18.(12分)已知橢圓E:的離心率,且右焦點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)四邊形的頂點(diǎn)在橢圓上,且對(duì)角線,過原點(diǎn),若,證明:四邊形的面積為定值.19.(12分)已知直線和的交點(diǎn)為P,求:(1)過點(diǎn)P且與直線垂直的直線l的方程;(2)以點(diǎn)P為圓心,且與直線相交所得弦長(zhǎng)為12的圓的方程;(3)從下面①②兩個(gè)問題中選一個(gè)作答,①若直線l過點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長(zhǎng)的圓的方程注:如果選擇兩個(gè)問題分別作答,按第一個(gè)計(jì)分20.(12分)如圖,在正四棱柱中,,,點(diǎn)在棱上,且平面(1)求的值;(2)若,求二面角的余弦值21.(12分)著名的“康托爾三分集”是由德國(guó)數(shù)學(xué)家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個(gè)閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長(zhǎng)度為,記第n次操作后剩余的各區(qū)間長(zhǎng)度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長(zhǎng)度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)22.(10分)已知數(shù)列為正項(xiàng)等比數(shù)列,滿足,,數(shù)列滿足(1)求數(shù)列,的通項(xiàng)公式;(2)若數(shù)列的前n項(xiàng)和為,數(shù)列滿足,證明:數(shù)列的前n項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因?yàn)?,所以,所以故選:A2、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B3、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點(diǎn),,,,則有:,所以.故選:A4、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A5、A【解析】利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,可求得該函數(shù)的極小值.【詳解】對(duì)函數(shù)求導(dǎo)得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.6、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項(xiàng)公式和求和公式進(jìn)行求解.【詳解】設(shè)這個(gè)塔頂層有盞燈,則問題等價(jià)于一個(gè)首項(xiàng)為,公比為2的等比數(shù)列的前7項(xiàng)和為381,所以,解得,所以這個(gè)塔的最底層有盞燈.故選:A.7、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點(diǎn)坐標(biāo),即可求出弦長(zhǎng)【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長(zhǎng)為故選A【點(diǎn)睛】本題查直線與橢圓的位置關(guān)系,考查弦長(zhǎng)的計(jì)算,屬于基礎(chǔ)題8、C【解析】設(shè)事件表示“選上的學(xué)生是男生”,事件表示“選上的學(xué)生是三好學(xué)生,求出和,利用條件概率公式計(jì)算即可求解.【詳解】設(shè)事件表示“選上的學(xué)生是男生”,事件表示“選上的學(xué)生是‘三好學(xué)生’”,則所求概率為.由題意可得:男生有人,“三好學(xué)生”有人,所以“三好學(xué)生”中男生有人,所以,,故.故選:C.9、C【解析】依據(jù)題意列出關(guān)于的不等式,即可求得的取值范圍.【詳解】當(dāng)時(shí),僅當(dāng)時(shí)成立,不符合題意;當(dāng)時(shí),若成立,則,解之得綜上,取值范圍是故選:C10、C【解析】由已知直接利用等差數(shù)列的性質(zhì)求解【詳解】在等差數(shù)列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故選C【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題11、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因?yàn)閍,b為正實(shí)數(shù),且,所以.當(dāng)且僅當(dāng),即時(shí)取等號(hào).故選:D12、C【解析】利用幾何概型的長(zhǎng)度比值,即可計(jì)算.【詳解】設(shè)直角邊長(zhǎng),斜邊,則線段的長(zhǎng)度大于的長(zhǎng)度的概率.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得的坐標(biāo)之間的關(guān)系,以及坐標(biāo)的范圍,即可求得結(jié)果.【詳解】以D為原點(diǎn),為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系如下所示:設(shè),則,,∵,∴,解得,因?yàn)椋詂的最大值為,即點(diǎn)P到平面的距離d的最大值為.故答案為:.14、【解析】求出的通項(xiàng)公式,令的指數(shù)為0,即可求解.【詳解】的通項(xiàng)公式是,,依題意,令,所以的展開式中的常數(shù)項(xiàng)為.故答案為:.15、2【解析】根據(jù)題意,求得過點(diǎn)的直線截圓所得弦長(zhǎng)的最大值和最小值,即可求得公差的最大值.【詳解】圓的圓心,半徑,設(shè)點(diǎn)為點(diǎn),因?yàn)?,故點(diǎn)在圓內(nèi),當(dāng)直線過點(diǎn),且經(jīng)過圓心時(shí),該直線截圓所得弦長(zhǎng)取得最大值;當(dāng)直線過點(diǎn),且與直線垂直時(shí),該直線截圓所得弦長(zhǎng)取得最小值,此時(shí),則滿足題意的直線為,即,又,則該直線截圓所得弦長(zhǎng)為;根據(jù)題意,要使得數(shù)列的公差最大,則,故最大公差.故答案為:.16、【解析】利用向量的坐標(biāo)運(yùn)算及向量數(shù)量積的坐標(biāo)表示即求.【詳解】由題意,空間向量,可得,所以,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)拋物線的方程為,其準(zhǔn)線方程為,(2)【解析】(1)根據(jù)焦點(diǎn)可求出的值,從而求出拋物線的方程,即可得到準(zhǔn)線方程;(2)設(shè),,,,將直線的方程與拋物線方程聯(lián)立消去,整理得,得到根與系數(shù)的關(guān)系,由拋物線的定義可知,代入即可求出所求【小問1詳解】解:由焦點(diǎn),得,解得所以拋物線的方程為,其準(zhǔn)線方程為,【小問2詳解】解:設(shè),,,直線的方程為.與拋物線方程聯(lián)立,得,消去,整理得,由拋物線定義可知,所以線段的長(zhǎng)為18、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組求解即可;(2)設(shè),代入,利用韋達(dá)定理,通過,結(jié)合,轉(zhuǎn)化求解即可【小問1詳解】【小問2詳解】設(shè),設(shè),代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴為定值19、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點(diǎn)的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點(diǎn)斜式,即可求解;(2)先求得點(diǎn)到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點(diǎn)為P,聯(lián)立方程組,解得,即,因?yàn)橹本€與直線垂直,所以直線的斜率為,所以過點(diǎn)且與直線垂直的直線方程為,即.【小問2詳解】解:因?yàn)辄c(diǎn)到直線的距離為,設(shè)所求圓的半徑為,由圓的的垂徑定理得,弦長(zhǎng),解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,設(shè)直線l的的斜率為,可得直線的方程為,即,則直線與坐標(biāo)軸的交點(diǎn)分別為,由,解得或,所以所求直線的方程為或.若選②,設(shè)所求圓的圓心為,半徑為,因?yàn)閳A與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標(biāo)為或,所以所求圓的方程為或.20、(1)答案見解析;(2).【解析】如圖,以點(diǎn)為原點(diǎn),,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,(1)設(shè),由平面,可得,從而數(shù)量積為零,可求出的值,進(jìn)而可求得的值;(2)利用空間向量求二面角的余弦值【詳解】解:(1)如圖,以點(diǎn)為原點(diǎn),,,的方向分別為,,軸的正方向,建立空間直角坐標(biāo)系,設(shè),則點(diǎn),,,則,因?yàn)槠矫?,所以,所以,解得或?dāng)時(shí),,,;當(dāng)時(shí),,,(2)因?yàn)?,由?)知,平面的一個(gè)法向量為設(shè)平面的法向量為,因?yàn)?,,所以令,則所以,由圖知,二面角的平面角為銳角,所以二面角的余弦值為21、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長(zhǎng)度的和,求得其通項(xiàng)公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長(zhǎng)度和為,結(jié)合題意,得到,利用對(duì)數(shù)的運(yùn)算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長(zhǎng)度為,根據(jù)“康托爾三分集”的定義可得:每次去掉的區(qū)間長(zhǎng)后組成的數(shù)為以為首項(xiàng),為公比的等比數(shù)列,第1次操作去掉的區(qū)間長(zhǎng)為,剩余區(qū)間的長(zhǎng)度和為,第2次操作去掉兩個(gè)區(qū)間長(zhǎng)為的區(qū)間,剩余區(qū)間的長(zhǎng)度和為,第3次操作去掉四個(gè)區(qū)間長(zhǎng)為的區(qū)間,剩余區(qū)間的長(zhǎng)度和為,第4次操作去掉個(gè)區(qū)間長(zhǎng)為,剩余區(qū)間的長(zhǎng)度和為,第次操作去掉個(gè)區(qū)間長(zhǎng)為,剩余區(qū)間的長(zhǎng)度和為,所以第次操作后剩余的各區(qū)間長(zhǎng)度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026中共遼寧省委黨校(遼寧行政學(xué)院、遼寧省社會(huì)主義學(xué)院)招聘高層次人才8人備考題庫帶答案詳解
- 2025年溫州瑞安市湖嶺鎮(zhèn)衛(wèi)生院招聘編外中藥士1人備考題庫有答案詳解
- 2026北京潞河醫(yī)院招聘49人備考題庫有完整答案詳解
- 2026年1月重慶市萬州區(qū)雙河口街道辦事處公益性崗位招聘1人備考題庫及一套答案詳解
- 2026上半年安徽事業(yè)單位聯(lián)考合肥市巢湖市招聘22人備考題庫含答案詳解
- 2025廣西防城港市防城區(qū)人大常委會(huì)辦公室招聘公益性崗位人員1人備考題庫及答案詳解1套
- 2026上半年云南事業(yè)單位聯(lián)考旅游職業(yè)學(xué)院招聘14人備考題庫(含答案詳解)
- 2026山東淄博高青縣事業(yè)單位綜合類崗位招聘?jìng)淇碱}庫及完整答案詳解一套
- 2026中交集團(tuán)紀(jì)委第一辦案中心社會(huì)招聘?jìng)淇碱}庫及答案詳解(新)
- 2026北京急救中心第一批招聘?jìng)淇碱}庫及完整答案詳解一套
- T∕ZZB 0623-2018 有機(jī)溶劑型指甲油
- 2025體彩知識(shí)考試題及答案
- 機(jī)械企業(yè)安全生產(chǎn)風(fēng)險(xiǎn)評(píng)估報(bào)告
- 馬匹性能智能評(píng)估-洞察及研究
- 中職班會(huì)課主題課件
- 政務(wù)服務(wù)大廳安全隱患排查
- 土建資料管理課件
- 鈑金檢驗(yàn)作業(yè)指導(dǎo)書
- 公司安全大講堂活動(dòng)方案
- 2025年江蘇省無錫市梁溪區(qū)八下英語期末統(tǒng)考模擬試題含答案
- GB/T 42186-2022醫(yī)學(xué)檢驗(yàn)生物樣本冷鏈物流運(yùn)作規(guī)范
評(píng)論
0/150
提交評(píng)論