湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2026屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第1頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2026屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第2頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2026屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第3頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2026屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第4頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2026屆數(shù)學高二上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2026屆數(shù)學高二上期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙兩名同學同時從教室出發(fā)去體育館打球(路程相等),甲一半時間步行,一半時間跑步;乙一半路程步行,一半路程跑步.如果兩人步行速度、跑步速度均相等,則()A.甲先到體育館 B.乙先到體育館C.兩人同時到體育館 D.不確定誰先到體育館2.已知過點A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)3.直線的方向向量為()A. B.C. D.4.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學為測量彬塔的高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.5.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關(guān)聯(lián),蘊含著中華文化的豐富內(nèi)涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.366.已知函數(shù)的圖象是下列四個圖象之一,且其導函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.7.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.8.函數(shù)的圖象大致是()A. B.C. D.9.已知,且,則實數(shù)的值為()A. B.3C.4 D.610.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交11.若,則的最小值為()A.1 B.2C.3 D.412.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項和,則其通項公式______14.已知向量,若,則實數(shù)___________.15.棱長為的正方體的頂點到截面的距離等于__________.16.函數(shù)的圖象在處的切線方程為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項公式;(3)當水溫在40℃到55℃之間時(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個時間段飲用最佳.(參考數(shù)據(jù):)18.(12分)設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為(1)求橢圓的方程;(2)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點且(為原點),求直線的斜率19.(12分)設(shè)橢圓過,兩點,為坐標原點(1)求橢圓的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點,,且?若存在,寫出該圓的方程,并求的取值范圍;若不存在,說明理由20.(12分)設(shè)點是拋物線上異于原點O的一點,過點P作斜率為、的兩條直線分別交于、兩點(P、A、B三點互不相同)(1)已知點,求的最小值;(2)若,直線AB的斜率是,求的值;(3)若,當時,B點的縱坐標的取值范圍21.(12分)蒙古包是蒙古族牧民居住的一種房子,建造和搬遷都很方便,適于游牧生活.其結(jié)構(gòu)如圖所示,上部分是側(cè)棱長為3的正六棱錐,下部分是高為1的正六棱柱,分別為正六棱柱上底面與下底面的中心.(1)若長為,把蒙古包的體積表示為的函數(shù);(2)求蒙古包體積的最大值.22.(10分)已知拋物線上的點到焦點的距離為6(1)求拋物線的方程;(2)設(shè)為拋物線的焦點,直線與拋物線交于,兩點,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)出總路程與步行速度、跑步速度,表示出兩人所花時間后比較不等式大小【詳解】設(shè)總路程為,步行速度,跑步速度對于甲:,得對于乙:,當且僅當時等號成立,而,故,乙花時間多,甲先到體育館故選:A2、A【解析】設(shè)出切點,對函數(shù)求導得到切點處的斜率,由點斜式得到切線方程,化簡為,整理得到方程有兩個解即可,解出不等式即可.【詳解】設(shè)切點為,,,則切線方程為:,切線過點代入得:,,即方程有兩個解,則有或.故答案為:A.【點睛】這個題目考查了函數(shù)的導函數(shù)的求法,以及過某一點的切線方程的求法,其中應用到導數(shù)的幾何意義,一般過某一點求切線方程的步驟為:一:設(shè)切點,求導并且表示在切點處的斜率;二:根據(jù)點斜式寫切點處的切線方程;三:將所過的點代入切線方程,求出切點坐標;四:將切點代入切線方程,得到具體的表達式.3、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因為,所以向量為直線的方向向量,故選:D4、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D5、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【詳解】甲最終獲得冠軍的概率,故選:B.6、A【解析】利用導數(shù)與函數(shù)的單調(diào)性之間的關(guān)系及導數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.7、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因為,所以8a2=9b2,所以故選:D.8、A【解析】根據(jù)函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當時,,則在上單調(diào)遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.9、B【解析】根據(jù)給定條件利用空間向量垂直的坐標表示計算作答.詳解】因,且,則有,解得,所以實數(shù)的值為3.故選:B10、B【解析】以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)向量垂直的坐標表示求出,再利用向量的坐標運算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,則.設(shè),則,取.,.故選:B【點睛】本題考查了空間向量垂直的坐標表示、空間向量的坐標表示、空間向量共線定理,屬于基礎(chǔ)題.11、D【解析】由基本不等式求解即可.【詳解】,當且僅當時,取等號.即所求最小值.故選:D12、D【解析】計算出每月應還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用當時,,可求出此時的通項公式,驗證n=1時是否適合,可得答案.【詳解】當時,,當時,不適合上式,∴,故答案為:.14、2【解析】利用向量平行的條件直接解出.【詳解】因為向量,且,所以,解得:2故答案為:215、【解析】根據(jù)勾股定理可以計算出,這樣得到是直角三角形,利用等體積法求出點到的距離.【詳解】解:如圖所示,在三棱錐中,是三棱錐的高,,在中,,,,所以是直角三角形,,設(shè)點到的距離為,.故A到平面的距離為故答案為:【點睛】本題考查了點到線的距離,利用等體積法求出點到面的距離.是解題的關(guān)鍵.16、【解析】根據(jù)導數(shù)的幾何意義可得,根據(jù)切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計算作答.(2)利用(1)的信息,列式變形、推導即可得證,進而求出的通項公式.(3)由(2)的結(jié)論列不等式,借助對數(shù)函數(shù)的性質(zhì)求解即得.【小問1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當時,,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問2詳解】由(1)知,,時,,,則有,即,而,于是得是以為首項,為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項公式是,.【小問3詳解】由(2)及已知得:,即,整理得,兩邊取常用對數(shù)得:,而,解得,即,所以在水燒開后4到7分鐘飲用最佳.【點睛】思路點睛:涉及實際意義給出的數(shù)列問題,正確理解實際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項間關(guān)系即可推理作答.18、(1)(2)或【解析】(1)根據(jù)已知條件求得,由此求得橢圓方程.(2)設(shè)出直線的方程,并與橢圓方程聯(lián)立,求得點坐標,根據(jù)列方程,化簡求得直線的斜率.【小問1詳解】設(shè)橢圓的半焦距為,依題意,,又,可得,.所以,橢圓的方程為小問2詳解】由題意,設(shè).設(shè)直線的斜率為,又,則直線的方程為,與橢圓方程聯(lián)立整理得,可得,代入得,進而直線的斜率.在中,令,得,所以直線的斜率為由,得,化簡得,從而所以,直線的斜率為或19、(1)(2)存在,,【解析】(1)根據(jù)橢圓E:()過,兩點,直接代入方程解方程組,解方程組即可.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當切線斜率存在時,設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達定理運算,同時滿足,則存在,否則不存在;在該圓的方程存在時,利用弦長公式結(jié)合韋達定理得到,結(jié)合題意求解即可,當切線斜率不存在時,驗證即可.【小問1詳解】將,的坐標代入橢圓的方程得,解得,所以橢圓的方程為【小問2詳解】假設(shè)滿足題意的圓存在,其方程為,其中,設(shè)該圓的任意一條切線和橢圓交于,兩點,當直線的斜率存在時,令直線的方程為,①將其代入橢圓的方程并整理得,由韋達定理得,,②因為,所以,③將①代入③并整理得,聯(lián)立②得,④因為直線和圓相切,因此,由④得,所以存在圓滿足題意當切線的斜率不存在時,易得,由橢圓方程得,顯然,綜上所述,存在圓滿足題意當切線的斜率存在時,由①②④得,由,得,即當切線的斜率不存在時,易得,所以綜上所述,存在圓心在原點的圓滿足題意,且20、(1);(2)3;(3);【解析】(1)根據(jù)兩點之間的距離公式,結(jié)合點坐標滿足拋物線,構(gòu)造關(guān)于的函數(shù)關(guān)系,求其最值即可;(2)根據(jù)題意,求得點的坐標,設(shè)出的直線方程,聯(lián)立拋物線方程,利用韋達定理求得點坐標,同理求得點坐標,再利用斜率計算公式求得即可;(3)根據(jù)題意,求得點的坐標,利用坐標轉(zhuǎn)化,求得關(guān)于的一元二次方程,利用其有兩個不相等的實數(shù)根,即可求得的取值范圍.【小問1詳解】因為點在拋物線上,故可得,又,當且僅當時,取得最小值.故的最小值為.【小問2詳解】當時,故可得,即點的坐標為;則的直線方程為:,聯(lián)立拋物線方程:,可得:,故可得,解得:,又故可得同理可得:,又的斜率,即.故為定值.【小問3詳解】當時,可得,此時,因為兩點在拋物線上,故可得,,因為,故可得,整理得:,,因為三點不同,故可得,則,即,,此方程可以理解為關(guān)于的一元二次方程,因為,故該方程有兩個不相等的實數(shù)根,,即,故,則,解得或.故點縱坐標的取值范圍為.【點睛】本題考察直線與拋物線相交時范圍問題,定值問題,解決

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論