2026屆浙江省寧波市慈溪市數(shù)學高二上期末質(zhì)量檢測試題含解析_第1頁
2026屆浙江省寧波市慈溪市數(shù)學高二上期末質(zhì)量檢測試題含解析_第2頁
2026屆浙江省寧波市慈溪市數(shù)學高二上期末質(zhì)量檢測試題含解析_第3頁
2026屆浙江省寧波市慈溪市數(shù)學高二上期末質(zhì)量檢測試題含解析_第4頁
2026屆浙江省寧波市慈溪市數(shù)學高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆浙江省寧波市慈溪市數(shù)學高二上期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.沙糖桔網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的最大值為90萬元,最小值為30萬元 B.這一年的總利潤超過400萬元C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.7月份的利潤最大2.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.3.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.4.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.5.函數(shù)的遞增區(qū)間是()A. B.和C. D.和6.已知,是橢圓的左,右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.7.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°8.已知雙曲線的兩個焦點,,是雙曲線上一點,且,,則雙曲線的標準方程是()A. B.C. D.9.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.10.某校去年有1100名同學參加高考,從中隨機抽取50名同學總成績進行分析,在這個調(diào)查中,下列敘述錯誤的是A.總體是:1100名同學的總成績 B.個體是:每一名同學C.樣本是:50名同學的總成績 D.樣本容量是:5011.如圖在中,,,在內(nèi)作射線與邊交于點,則使得的概率是()A. B.C. D.12.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,若,,則異面直線與所成角的大小為______.14.正四棱柱中,,,點為底面四邊形的中心,點在側(cè)面四邊形的邊界及其內(nèi)部運動,若,則線段長度的最大值為__________15.已知圓:,圓:,則圓與圓的位置關(guān)系是______16.曲線的長度為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.18.(12分)某企業(yè)計劃新購買臺設(shè)備,并將購買的設(shè)備分配給名年齡不同(視為技術(shù)水平不同)的技工加工一批模具,因技術(shù)水平不同而加工出的產(chǎn)品數(shù)量不同,故產(chǎn)生的經(jīng)濟效益也不同.若用變量表示不同技工的年齡,變量為相應(yīng)的效益值(元),根據(jù)以往統(tǒng)計經(jīng)驗,他們的工作效益滿足最小二乘法,且關(guān)于的線性回歸方程為(1)試預(yù)測一名年齡為歲的技工使用該設(shè)備所產(chǎn)生的經(jīng)濟效益;(2)試根據(jù)的值判斷使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強弱(,則認為與線性相關(guān)性很強;,則認為與線性相關(guān)性不強);(3)若這批設(shè)備有兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是,.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本不增加;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加萬元.求這批設(shè)備增加的生產(chǎn)成本的期望參考數(shù)據(jù):,參考公式:回歸直線的斜率和截距的最小二乘估計分別為,,.19.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)已知,曲線與曲線相交于A,B兩點,求.20.(12分)已知函數(shù),在處有極值.(1)求、的值;(2)若,有個不同實根,求的范圍.21.(12分)等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若滿足數(shù)列為遞增數(shù)列,求數(shù)列前項和22.(10分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點,求證平面;(2)若,求面與面的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)圖形和中位數(shù)、眾數(shù)的概念依次判斷選項即可.【詳解】A:由圖可知,月收入的最大值為90,最小值為30,故A正確;B:各個月的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,所以總利潤為20+30+20+10+30+30+60+40+30+30+50+30=380(萬元),故B錯誤;C:這12個月利潤的中位數(shù)與眾數(shù)均為30,故C正確;D:7月份的利潤最大,為60萬元,故D正確.故選:B2、A【解析】因為,那么結(jié)合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應(yīng)用,屬于中等題.3、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B4、A【解析】求出函數(shù)圖象的對稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因為,所以,,所以,函數(shù)圖象的對稱中心為,將函數(shù)的圖象向右平移個單位,再將所得圖象向下平移個單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A5、C【解析】求導后,由可解得結(jié)果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.6、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因為等腰三角形,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.7、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A8、D【解析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【詳解】設(shè),則由已知得,,又,,又,,雙曲線的標準方程為.故選:D9、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計算公式,即可求得結(jié)果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.10、B【解析】采用逐一驗證法,根據(jù)總體,個體,樣本的概念,可得結(jié)果.【詳解】據(jù)題意:總體是1100名同學的總成績,故A正確個體是每名同學的總成績,故B錯樣本是50名同學的總成績,故C正確樣本容量是:50,故D正確故選:B【點睛】本題考查總體,個體,樣本的概念,屬基礎(chǔ)題.11、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎(chǔ)題12、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準線的距離,即可求出線段中點的橫坐標,即得到答案.【詳解】由已知可得拋物線的準線方程為,設(shè)點的坐標分別為和,由拋物線的定義得,即,線段中點的橫坐標為,故線段的中點到軸的距離是.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】畫出長方體,再將異面直線與利用平行線轉(zhuǎn)移到一個三角形內(nèi)求解角度即可.【詳解】畫出長方體可得異面直線與所成角為與之間的夾角,連接.則因為,則,又,故,又,故為等腰直角三角形,故,即異面直線與所成角的大小為故答案為【點睛】本題主要考查立體幾何中異面直線的角度問題,一般的處理方法是將異面直線經(jīng)過平行線的轉(zhuǎn)換構(gòu)成三角形求角度,屬于基礎(chǔ)題型.14、【解析】根據(jù)正四棱柱的性質(zhì)、矩形的性質(zhì),線面垂直的判定定理,結(jié)合勾股定理進行求解即可.【詳解】當位于點時,因為是正方形,所以,由正四棱柱的性質(zhì)可知,平面,因為平面,所以,因為平面,所以平面,平面,所以,因此當位于點時,滿足題意,當點位于邊點時,若,在矩形中,,因為,所以,因此,所以有,此時,又平面,所以平面,故點的軌跡在線段上,,所以線段長度的最大值為.故答案為:關(guān)鍵點睛:利用特殊點判斷出點的軌跡是解題的關(guān)鍵.15、相交【解析】把兩個圓的方程化為標準方程,分別找出兩圓的圓心坐標和半徑,利用兩點間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.16、【解析】曲線的圖形是:以原點為圓心,以2為半徑的圓的左半圓,進而可求出結(jié)果.【詳解】解:由得,所以曲線()的圖形是:以原點為圓心,以2為半徑的圓的左半圓,∴曲線()的長度是,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由可知,即可求出,故可得漸近線方程;(2)利用點在拋物線上及其拋物線的定義列方程求解即可.【詳解】(1)∵E的離心率,∴,即,解得,故E的漸近線方程為.(2)∵是C上一點,∴①,由拋物線的定義可知②,兩式聯(lián)立可得,解得則C的方程為.18、(1)元;(2)使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強;(3)0.13萬元.【解析】(1)直接把代入線性回歸方程即得解;(2)先求出,再代公式求出相關(guān)系數(shù)比較即得解;(3)設(shè)增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5,求出對應(yīng)的概率即得解.小問1詳解】解:當時,.所以預(yù)測一名年齡為歲的技工使用該設(shè)備所產(chǎn)生的經(jīng)濟效益為元.【小問2詳解】解:由題得,所以,所以.因為,所以與線性相關(guān)性很強.所以使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強.【小問3詳解】解:設(shè)增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(萬元),所以這批設(shè)備增加的生產(chǎn)成本的期望為0.13萬元.19、(1),(2)2【解析】(1)消參數(shù)即可得曲線的普通方程,利用極坐標方程與直角坐標方程之間的轉(zhuǎn)化關(guān)系式,從而曲線的直角坐標方程;(2)將的參數(shù)方程代入的直角坐標方程,得關(guān)于的一元二次方程,由韋達定理得,即可得的值.【小問1詳解】由,消去參數(shù),得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標方程為【小問2詳解】將代入,整理得,則,令方程的兩個根為由韋達定理得,所以.20、(1),(2)【解析】(1)根據(jù)題設(shè)條件可得,由此可解得與的值(2)依題意可知直線與函數(shù)的圖象有三個不同的交點,則的取值范圍介于極小值與極大值之間.【小問1詳解】因為函數(shù),在處有極值,所以,即,解得,.【小問2詳解】由(1)知,,所以在上,,單調(diào)遞增,在上,,單調(diào)遞減,在上,,單調(diào)遞增,所以,,若有3個不同實根,則,所以的取值范圍為.21、(1)或(2)【解析】(1)利用等差數(shù)列通項公式,可構(gòu)造方程組求得,由此可得通項公式;(2)由(1)可得,利用分組求和法,結(jié)合等差等比求和公式可得結(jié)果.【小問1詳解】設(shè)等差數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論