版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省贛州市寧都縣三中2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.氣象臺(tái)正南方向的一臺(tái)風(fēng)中心,正向北偏東30°方向移動(dòng),移動(dòng)速度為,距臺(tái)風(fēng)中心以內(nèi)的地區(qū)都將受到影響,若臺(tái)風(fēng)中心的這種移動(dòng)趨勢(shì)不變,氣象臺(tái)所在地受到臺(tái)風(fēng)影響持續(xù)時(shí)間大約是()A. B.C. D.2.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點(diǎn),則AM與平面所成角的正弦值為()A. B.C. D.3.如圖,四棱錐的底面是矩形,設(shè),,,是棱上一點(diǎn),且,則()A. B.C. D.4.直線的一個(gè)法向量為()A. B.C. D.5.已知雙曲線左右焦點(diǎn)為,,過(guò)的直線與雙曲線的右支交于P,Q兩點(diǎn),且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.6.正方體的棱長(zhǎng)為2,E,F(xiàn),G分別為,AB,的中點(diǎn),則直線ED與FG所成角的余弦值為()A. B.C. D.7.已知l,m是兩條不同的直線,是兩個(gè)不同的平面,且,則()A.若,則 B.若,則C.若,則 D.若,則8.已知,滿足,則的最小值為()A.5 B.-3C.-5 D.-99.已知雙曲線的離心率為,左焦點(diǎn)為F,實(shí)軸右端點(diǎn)為A,虛軸上端點(diǎn)為B,則為()A.直角三角形 B.鈍角三角形C.等腰三角形 D.銳角三角形10.直線且的傾斜角為()A. B.C. D.11.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交12.1202年,意大利數(shù)學(xué)家斐波那契出版了他的《算盤(pán)全書(shū)》.他在書(shū)中收錄了一些有意思的問(wèn)題,其中有一個(gè)關(guān)于兔子繁殖的問(wèn)題:如果1對(duì)兔子每月生1對(duì)小兔子(一雌一雄),而每1對(duì)小兔子出生后的第3個(gè)月里,又能生1對(duì)小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個(gè)月的兔子的總對(duì)數(shù),則有(n>2),.設(shè)數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項(xiàng)和為()A.11 B.12C.13 D.18二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)生到某工廠進(jìn)行勞動(dòng)實(shí)踐,利用打印技術(shù)制作模型.如圖,該模型為一個(gè)大圓柱中挖去一個(gè)小圓柱后的剩余部分(兩個(gè)圓柱底面圓的圓心重合),大圓柱的軸截面是邊長(zhǎng)為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為_(kāi)_______g.(?。?4.在平面直角坐標(biāo)系中,已知雙曲線的左,右焦點(diǎn)分別為,,過(guò)且與圓相切的直線與雙曲線的一條漸近線相交于點(diǎn)(點(diǎn)在第一象限),若,則雙曲線的離心率___________.15.定義在R上的函數(shù)滿足,其中為自然對(duì)數(shù)的底數(shù),,則滿足的a的取值范圍是__________.16.拋物線的準(zhǔn)線方程為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)2020年10月,中共中央辦公廳、國(guó)務(wù)院辦公廳印發(fā)了《關(guān)于全面加強(qiáng)和改進(jìn)新時(shí)代學(xué)校體育工作的意見(jiàn)》,某地積極開(kāi)展中小學(xué)健康促進(jìn)行動(dòng),發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分?jǐn)?shù),規(guī)定:考生須參加立定跳遠(yuǎn)、擲實(shí)心球、一分鐘跳繩三項(xiàng)測(cè)試,其中一分鐘跳繩滿分20分,某校為掌握九年級(jí)學(xué)生一分鐘跳繩情況,隨機(jī)抽取了100名學(xué)生測(cè)試,其一分一分鐘跳繩個(gè)數(shù)成績(jī)(分)1617181920頻率(1)若每分鐘跳繩成績(jī)不足18分,則認(rèn)為該學(xué)生跳繩成績(jī)不及格,求在進(jìn)行測(cè)試的100名學(xué)生中跳繩成績(jī)不及格的人數(shù)為多少?(2)該學(xué)校決定由這次跳繩測(cè)試一分鐘跳繩個(gè)數(shù)在205以上(包括205)的學(xué)生組成“小小教練員"團(tuán)隊(duì),小明和小華是該團(tuán)隊(duì)的成員,現(xiàn)學(xué)校要從該團(tuán)隊(duì)中選派2名同學(xué)參加某跳繩比賽,求小明和小華至少有一人被選派的概率18.(12分)已知,以點(diǎn)為圓心圓被軸截得的弦長(zhǎng)為.(1)求圓的方程;(2)若過(guò)點(diǎn)的直線與圓相切,求直線的方程.19.(12分)已知數(shù)列中,,().(1)求證:是等比數(shù)列,并求的通項(xiàng)公式;(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和為.20.(12分)求適合條件的橢圓的標(biāo)準(zhǔn)方程.(1)長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過(guò)點(diǎn);(2)在x軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且焦距為6.21.(12分)如圖,在四面體ABCD中,,平面ABC,點(diǎn)M為棱AB的中點(diǎn),,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值22.(10分)如圖,矩形的兩個(gè)頂點(diǎn)位于x軸上,另兩個(gè)頂點(diǎn)位于拋物線在x軸上方的曲線上,求矩形面積最大時(shí)的邊長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用余弦定理進(jìn)行求解即可.【詳解】如圖所示:設(shè)臺(tái)風(fēng)中心為,,小時(shí)后到達(dá)點(diǎn)處,即,當(dāng)時(shí),氣象臺(tái)所在地受到臺(tái)風(fēng)影響,由余弦定理可知:,于是有:,解得:,所以氣象臺(tái)所在地受到臺(tái)風(fēng)影響持續(xù)時(shí)間大約是,故選:D2、B【解析】取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點(diǎn),以為原點(diǎn),所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,不妨設(shè),則,所以,平面的一個(gè)法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B3、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B4、B【解析】直線化為,求出直線的方向向量,因?yàn)榉ㄏ蛄颗c方向向量垂直,逐項(xiàng)驗(yàn)證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因?yàn)榉ㄏ蛄颗c方向向量垂直,設(shè)法向量為,所以,由于,A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤;故選:B.5、C【解析】由雙曲線的定義得出中各線段長(zhǎng)(用表示),然后通過(guò)余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C6、B【解析】建立空間直角坐標(biāo)系,利用空間向量坐標(biāo)運(yùn)算即可求解.【詳解】如圖所示建立適當(dāng)空間直角坐標(biāo)系,故選:B7、B【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系分析選項(xiàng)A,C,D,由平面與平面垂直的判定定理判定選項(xiàng)D.【詳解】選項(xiàng)A.由,,直線l,m可能相交、平行,異面,故不正確.選項(xiàng)B.由,,則,故正確.選項(xiàng)C.由,,直線l,m可能相交、平行,異面,故不正確.選項(xiàng)D.由,,則可能相交,可能平行,故不正確.故選:B8、D【解析】作出可行域,作出目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解【詳解】解:作出可行域,如圖內(nèi)部(含邊界),作直線,在中,,當(dāng)直線向下平移時(shí),增大,因此把直線向上平移,當(dāng)直線過(guò)點(diǎn)時(shí),故選:D9、A【解析】根據(jù)三邊的關(guān)系即可求出【詳解】因,所以,而,,,所以,即,所以為直角三角形故選:A10、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.11、A【解析】計(jì)算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.12、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項(xiàng)都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項(xiàng)和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項(xiàng)都為奇數(shù),∴前36項(xiàng)共有12項(xiàng)為偶數(shù),∴數(shù)列{an}的前36項(xiàng)和為12×1+24×0=12.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4500【解析】根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案:4500.14、2【解析】設(shè)切點(diǎn),根據(jù),可得,在中,利用余弦定理構(gòu)造齊次式,從而可得出答案.【詳解】解:設(shè)切點(diǎn),由,∴,∵為中點(diǎn),則為中位線,∴,,中,,,,∴.故答案為:2.15、【解析】設(shè),求出其導(dǎo)數(shù)結(jié)合條件得出在上單調(diào)遞減,將問(wèn)題轉(zhuǎn)化為求解,由的單調(diào)性可得答案.【詳解】設(shè),則由,則所以在上單調(diào)遞減.又由,即,即,所以故答案為:16、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點(diǎn)在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)14人;(2).【解析】(1)根據(jù)頻率直方表區(qū)間成績(jī)及其對(duì)應(yīng)的頻率,即可求每分鐘跳繩成績(jī)不足18分的人數(shù).(2)由表格數(shù)據(jù)求出一分鐘跳繩個(gè)數(shù)在205以上(包括205)的學(xué)生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個(gè)被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績(jī)不足18分,即為成績(jī)是16分或17分,在進(jìn)行測(cè)試的100名學(xué)生中跳繩成績(jī)不及格人數(shù)為:人)(2)一分鐘跳繩個(gè)數(shù)在205以上(包括205)的學(xué)生頻率為,其人數(shù)為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個(gè)被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.18、(1)(2)或【解析】(1)根據(jù)垂徑定理,可直接計(jì)算出圓的半徑;(2)根據(jù)直線的斜率是否存在分類(lèi)討論,斜率不存在時(shí),可得到直線方程為的直線滿足題意,斜率存在時(shí),利用直線與圓相切,即到直線的距離等于半徑,然后解出關(guān)于斜率的方程即可.【小問(wèn)1詳解】不妨設(shè)圓的半徑為,根據(jù)垂徑定理,可得:解得:則圓的方程為:【小問(wèn)2詳解】當(dāng)直線的斜率不存在時(shí),則有:故此時(shí)直線與圓相切,滿足題意當(dāng)直線的斜率存在時(shí),不妨設(shè)直線的斜率為,點(diǎn)的直線的距離為直線的方程為:則有:解得:,此時(shí)直線的方程為:綜上可得,直線的方程為:或19、(1)(2)【解析】由已知式子變形可得是以為首項(xiàng),為公比的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式易得利用錯(cuò)位相減法,得到數(shù)列的前項(xiàng)和為解析:(1)由,()知,又,∴是以為首項(xiàng),為公比的等比數(shù)列,∴,∴(2),,兩式相減得,∴點(diǎn)睛:本題主要考查數(shù)列的證明,錯(cuò)位相減法等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力,轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn)中將已知的遞推公式進(jìn)行變形,轉(zhuǎn)化為的形式來(lái)證明,還可以根據(jù)等比數(shù)列的定義來(lái)證明;第二問(wèn),將第一問(wèn)中得到的結(jié)論代入,先得到的表達(dá)式,利用錯(cuò)位相減法,即可得到數(shù)列的前項(xiàng)和為20、(1)或(2)【解析】(1)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可;(2)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可.【小問(wèn)1詳解】當(dāng)橢圓焦點(diǎn)在x軸上時(shí),方程可設(shè)為,將點(diǎn)代入得,解之得,則所求橢圓方程為當(dāng)橢圓焦點(diǎn)在y軸上時(shí),方程可設(shè)為,將點(diǎn)代入得,解之得,則所求橢圓方程為【小問(wèn)2詳解】橢圓方程可設(shè)為,則,解之得,則橢圓方程為21、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點(diǎn),分別以,,方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個(gè)法向量和平面DCM的一個(gè)法向量,然后由求解【小問(wèn)1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省石家莊市新華區(qū)2025年七年級(jí)上學(xué)期期末考試英語(yǔ)試題附答案
- 園長(zhǎng)安全管理培訓(xùn)總結(jié)課件
- 醫(yī)院安全會(huì)議及培訓(xùn)記錄課件
- 2025年高職(稅務(wù)籌劃基礎(chǔ))方案構(gòu)思測(cè)試試題及答案
- 爆破工程課件3起爆器材與起爆方法
- 2026年銷(xiāo)售工程師培訓(xùn)考試題集
- 2026年新聞媒體記者面試技巧與題目分析
- 2026年誠(chéng)通控股銷(xiāo)售部經(jīng)理銷(xiāo)售部團(tuán)隊(duì)建設(shè)考核含答案
- 2026年融資租賃業(yè)務(wù)拓展經(jīng)理筆試題及解析
- 2026年新聞出版單位編輯部副主任招聘考試題目集錄
- 2025至2030中國(guó)細(xì)胞存儲(chǔ)行業(yè)調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 《中華人民共和國(guó)危險(xiǎn)化學(xué)品安全法》解讀
- 水暖施工員考試及答案
- 2025年省級(jí)行業(yè)企業(yè)職業(yè)技能競(jìng)賽(老人能力評(píng)估師)歷年參考題庫(kù)含答案
- 黑龍江省哈爾濱市第九中學(xué)校2024-2025學(xué)年高二上學(xué)期期末考試生物試題 含解析
- 國(guó)家開(kāi)放大學(xué)電大《國(guó)際私法》形考任務(wù)1-5題庫(kù)及答案
- 紅色繪本小故事愛(ài)國(guó)教育-長(zhǎng)征路上的紅小丫課件
- 樁基礎(chǔ)負(fù)摩阻計(jì)算表格(自動(dòng)版)
- T-CCMI 20-2022 乘用車(chē)發(fā)動(dòng)機(jī)曲軸鍛造毛坯件 技術(shù)條件
- 九年級(jí)上英語(yǔ)復(fù)習(xí)句型轉(zhuǎn)換
- 茶藝師培訓(xùn)教材ppt課件
評(píng)論
0/150
提交評(píng)論