2026屆廣東省廣州市番禺區(qū)禺山中學高二上數(shù)學期末聯(lián)考試題含解析_第1頁
2026屆廣東省廣州市番禺區(qū)禺山中學高二上數(shù)學期末聯(lián)考試題含解析_第2頁
2026屆廣東省廣州市番禺區(qū)禺山中學高二上數(shù)學期末聯(lián)考試題含解析_第3頁
2026屆廣東省廣州市番禺區(qū)禺山中學高二上數(shù)學期末聯(lián)考試題含解析_第4頁
2026屆廣東省廣州市番禺區(qū)禺山中學高二上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆廣東省廣州市番禺區(qū)禺山中學高二上數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.2.工業(yè)生產(chǎn)者出廠價格指數(shù)(PRoduceRPRiceIndexfoRIndustRialPRoducts,簡稱PPI)是反映工業(yè)企業(yè)產(chǎn)品第一次出售時的出廠價格的變化趨勢和變動幅度,是反映某一時期生產(chǎn)領(lǐng)域價格變動情況的重要經(jīng)濟指標,也是制定有關(guān)經(jīng)濟政策和國民經(jīng)濟核算的重要依據(jù).根據(jù)下面提供的我國2020年1月—2021年11月的工業(yè)生產(chǎn)者出廠價格指數(shù)的月度同比(將上一年同月作為基期進行對比的價格指數(shù))和月度環(huán)比(將上月作為基期進行對比的價格指數(shù))漲跌情況的折線圖判斷,以下結(jié)論正確的()A.2020年各月的PPI在逐月增大B.2020年各月的PPI均高于2019年同期水平C.2021年1月—11月各月的PPI在逐月減小D.2021年1月—11月各月的PPI均高于2020年同期水平3.下列結(jié)論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.34.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b5.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.6.某工廠去年的電力消耗為千瓦,由于設各更新,該工廠計劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦7.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.758.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.9.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.相離10.已知實數(shù)x,y滿足,則的取值范圍是()A. B.C. D.11.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.12.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.22二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值為______14.光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點;光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出.如圖,一個光學裝置由有公共焦點的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點發(fā)出,依次經(jīng)與反射,又回到了點,歷時秒;若將裝置中的去掉,此光線從點發(fā)出,經(jīng)兩次反射后又回到了點,歷時秒;若,則與的離心率之比為________15.如圖,橢圓的左右焦點為,,以為圓心的圓過原點,且與橢圓在第一象限交于點,若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.16.在空間直角坐標系中,點關(guān)于原點的對稱點為點,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不相等的零點,證明:18.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(1)求證:;(2)求直線與平面所成角的正弦值19.(12分)已知兩動圓:和:,把它們的公共點的軌跡記為曲線,若曲線與軸的正半軸的交點為,取曲線上的相異兩點、滿足:且點與點均不重合.(1)求曲線的方程;(2)證明直線恒經(jīng)過一定點,并求此定點的坐標;20.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大??;(3)在側(cè)棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由21.(12分)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若恒成立,求實數(shù)的取值范圍.22.(10分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D2、D【解析】根據(jù)折線圖中同比、環(huán)比的正負情況,結(jié)合各選項的描述判斷正誤.【詳解】A:2020年前5個月PPI在逐月減小,錯誤;B:2020年各月同比為負值,即低于2019年同期水平,錯誤;C:2021年1月—11月各月的PPI環(huán)比為正值,即逐月增大,錯誤;D:2021年1月—11月各月的PPI同比為正值,即高于2020年同期水平,正確.故選:D.3、C【解析】構(gòu)造函數(shù)利用導數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C4、D【解析】運用不等式性質(zhì),結(jié)合特殊值法,對選項注逐一判斷正誤即可.【詳解】選項A中,若,時,則成立,否則,若,則,顯然錯誤,故選項A錯誤;選項B中,若,,則能推出,否則,若,則,顯然錯誤,故選項B錯誤;選項C中,若,則,顯然錯誤,故選項C錯誤;選項D中,若,顯然,由不等式性質(zhì)知不等式兩邊同乘以一個正數(shù),不等式不變號,即.故選:D5、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.6、D【解析】根據(jù)等比數(shù)列的定義進行求解即可.【詳解】因為去年的電力消耗為千瓦,工廠計劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D7、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C8、C【解析】建立坐標系,坐標表示向量,求出點坐標,進而求出結(jié)果.【詳解】以為坐標原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C9、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現(xiàn)與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標準方程為:,所以圓心坐標為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C10、B【解析】實數(shù),滿足,通過討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點到直線距離范圍的2倍,求出切線方程根據(jù)平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因為實數(shù),滿足,所以當時,,其圖象是位于第一象限,焦點在軸上的雙曲線的一部分(含點),當時,其圖象是位于第四象限,焦點在軸上的橢圓的一部分,當時,其圖象不存在,當時,其圖象是位于第三象限,焦點在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點到直線的距離所以,結(jié)合圖象可得的范圍就是圖象上一點到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過圖形可得當曲線上一點位于時,取得最小值,無最大值,小于兩平行線與之間的距離的倍,設與其圖像在第一象限相切于點,由因為或(舍去)所以直線與直線的距離為此時,所以的取值范圍是故選:B【點睛】三種距離公式:(1)兩點間的距離公式:平面上任意兩點間的距離公式為;(2)點到直線的距離公式:點到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.11、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),三角形的重心的向量表示,屬于中檔題.12、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出的導函數(shù),然后將代入可得答案.【詳解】,所以故答案為:14、##0.75【解析】根據(jù)橢圓和雙曲線定義用長半軸長和實半軸長表示出撤掉裝置前后的路程,然后由已知可解.【詳解】記橢圓的長半軸長為,雙曲線的實半軸長為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因為,所以,即所以.故答案為:15、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.16、【解析】先利用關(guān)于原點對稱的點的坐標特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關(guān)于原點對稱,故,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是(4,+∞),單調(diào)遞減區(qū)間是(0,4);(2)證明見解析.【解析】(1)求的導函數(shù),結(jié)合定義域及導數(shù)的符號確定單調(diào)區(qū)間;(2)法一:討論、時的零點情況,即可得,構(gòu)造,利用導數(shù)研究在(0,2a)恒成立,結(jié)合單調(diào)性證明不等式;法二:設,由零點可得,進而應用分析法將結(jié)論轉(zhuǎn)化為證明,綜合換元法、導數(shù)證明結(jié)論即可.【小問1詳解】函數(shù)的定義域為(0,+∞),當a=2時,,則令得,x>4;令得,0<x<4;所以,單調(diào)遞增區(qū)間是(4,+∞);單調(diào)遞減區(qū)間是(0,4).【小問2詳解】法一:當a≤0時,>0在(0,+∞)上恒成立,故函數(shù)不可能有兩個不相等的零點,當a>0時,函數(shù)在(2a,+∞)上單調(diào)遞增,在(0,2a)上單調(diào)遞減,因為函數(shù)有兩個不相等的零點,則,不妨設,設,(0<x<2a),則,所以,由a>0知:在(0,2a)恒成立,所以在(0,2a)上單調(diào)遞減,即>=0,所以,即,又,故,因為,所以,因為函數(shù)在(2a,+∞)上單調(diào)遞增,所以,即法二:不妨設,由題意得,,得,即,要證,只需證,即證:,即,令,,則,所以在區(qū)間(1,+∞)單調(diào)遞減,故<=0,即恒成立因此,所以.【點睛】關(guān)鍵點點睛:第二問,法一:應用極值點偏移方法構(gòu)造,將問題轉(zhuǎn)化為在(0,2a)恒成立,法二:根據(jù)零點可得,再由分析法將問題化為證明,構(gòu)造函數(shù),綜合運用換元法、導數(shù)證明結(jié)論.18、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標原點,,,所在直線為,,軸,建立空間直角坐標系,則,,,,,因為,,所以,即;【小問2詳解】設平面的法向量為因為,由,得,令,則所以平面的一個法向量為,又所以故直線與平面所成角的正弦值為19、(1);(2)證明見解析,.【解析】(1)設兩動圓的公共點為,則有,運用橢圓的定義,即可得到,,,進而得到的軌跡方程;(2),設,,,,設出直線方程,聯(lián)立方程組,利用韋達定理法及向量的數(shù)量積的坐標表示,即可得到定點.【小問1詳解】設兩動圓的公共點為,則有由橢圓的定義可知的軌跡為橢圓,設方程為,則,,所以曲線的方程是:【小問2詳解】由題意可知:,且直線斜率存在,設,,設直線:,聯(lián)立方程組,可得,,,因為,所以有,把代入整理化簡得,或舍,因為點與點均不重合,所以直線恒過定點20、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,用空間向量求解二面角;(3)設出F點坐標,用空間向量的點到平面距離公式進行求解.【小問1詳解】證明:連接BD,設BD與AC交于點O,連接PO.因為,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因為平面PBD,所以【小問2詳解】因為,所以,所以由(1)知平面ABCD,以O為原點,,,的方向為x軸,y軸,z軸正方向,建立空間直角坐標系,則,,,,,,所以,,,設平面AEC的法向量,則,即,令,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論