河北廊坊五校2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
河北廊坊五校2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
河北廊坊五校2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
河北廊坊五校2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
河北廊坊五校2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北廊坊五校2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.2.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.3.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.4.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.5.在正方體中,分別為的中點,為側(cè)面的中心,則異面直線與所成角的余弦值為()A. B.C. D.6.已知橢圓C1:+y2=1(m>1)與雙曲線C2:–y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則A.m>n且e1e2>1 B.m>n且e1e2<1C.m<n且e1e2>1 D.m<n且e1e2<17.已知公差不為0的等差數(shù)列中,(m,),則mn的最大值為()A.6 B.12C.36 D.488.已知雙曲線的左、右焦點分別為,,點在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.9.已知長方體的底面ABCD是邊長為8的正方形,長方體的高為,則與對角面夾角的正弦值等于()A. B.C. D.10.蟋蟀鳴叫可以說是大自然優(yōu)美、和諧的音樂,殊不知蟋蟀鳴叫的頻率(每分鐘鳴叫的次數(shù))與氣溫(單位:℃)存在著較強的線性相關(guān)關(guān)系.某地觀測人員根據(jù)如表的觀測數(shù)據(jù),建立了關(guān)于的線性回歸方程,則下列說法不正確的是()(次數(shù)/分鐘)2030405060(℃)2527.52932.536A.的值是20B.變量,呈正相關(guān)關(guān)系C.若的值增加1,則的值約增加0.25D.當(dāng)蟋蟀52次/分鳴叫時,該地當(dāng)時的氣溫預(yù)報值為33.5℃11.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.12.已知雙曲線(,)的左,右焦點分別為,.若雙曲線右支上存在點,使得與雙曲線的一條漸近線垂直并相交于點,且,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,則_____________.14.《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題.“今有城墻厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”題意是:“兩只老鼠從城墻的兩邊相對分別打洞穿墻.大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半……”則小老鼠第三天穿城墻______尺;若城墻厚40尺,則至少在第________天相遇15.已知橢圓的左、右焦點分別為,,為橢圓上一點,垂直于軸,且為等腰三角形,則橢圓的離心率為__________16.已知空間向量,則向量在坐標(biāo)平面上的投影向量是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,證明:存在唯一的零點;(2)若,求實數(shù)的取值范圍.18.(12分)已知直線,直線,直線(1)若與的傾斜角互補,求m的值;(2)當(dāng)m為何值時,三條直線能圍成一個直角三角形19.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個幾何體的表面積;(2)設(shè)G是弧DF的中點,設(shè)P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.20.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標(biāo)原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F標(biāo)準(zhǔn)方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標(biāo),若不存在,請說明理由21.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.22.(10分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點,使得點到平面的距離為?若存在,確定點的位置;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】構(gòu)造,通過求導(dǎo),研究函數(shù)的單調(diào)性及極值,最值,畫出函數(shù)圖象,數(shù)形結(jié)合求出實數(shù)的取值范圍.【詳解】令,即,令,當(dāng)時,,,令得:或,結(jié)合,所以,令得:,結(jié)合得:,所以在處取得極大值,也是最大值,,當(dāng)時,,且,當(dāng)時,,則恒成立,單調(diào)遞增,且當(dāng)時,,當(dāng)時,,畫出的圖象,如下圖:要想有3個零點,則故選:B2、A【解析】根據(jù)將最小值問題轉(zhuǎn)化為d取得最大值問題,然后結(jié)合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內(nèi),過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當(dāng)d取得最大值時,有最小值,結(jié)合圖形易知,當(dāng)直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.3、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.4、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因為,所以,解得故選:C5、A【解析】建立空間直角坐標(biāo)系,用空間向量求解異面直線夾角的余弦值.【詳解】如圖,以D為坐標(biāo)原點,DA所在直線為x軸,DC所在直線為y軸,所在直線為z軸建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,則,,,,則,,設(shè)異面直線與所成角為(),則.故選:A6、A【解析】詳解】試題分析:由題意知,即,由于m>1,n>0,可得m>n,又=,故.故選A【考點】橢圓的簡單幾何性質(zhì),雙曲線的簡單幾何性質(zhì)【易錯點睛】計算橢圓的焦點時,要注意;計算雙曲線的焦點時,要注意.否則很容易出現(xiàn)錯誤7、C【解析】由等差數(shù)列的性質(zhì)可得,再應(yīng)用基本不等式求mn的最大值,注意等號成立條件.【詳解】由題設(shè)及等差數(shù)列的性質(zhì)知:,又m,,所以,即,當(dāng)且僅當(dāng)時等號成立.所以mn的最大值為.故選:C8、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因為,又,所以,,又,即,,所以離心率故選:C9、A【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長為8的正方形,,∴,,,因為,且,所以平面,∴,平面的法向量,∴與對角面所成角的正弦值為故選:A.10、D【解析】根據(jù)樣本中心過經(jīng)過線性回歸方程、正相關(guān)的性質(zhì)和線性回歸方程的意義進行判斷即可.【詳解】由題意,得,,則,故A正確;由線性回歸方程可知,,變量,呈正相關(guān)關(guān)系,故B正確;若的值增加1,則的值約增加0.25,故C正確;當(dāng)時,,故D錯誤.故選:D.11、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.12、B【解析】利用漸近線方程和直線解出Q點坐標(biāo),再由得P點坐標(biāo),代入雙曲線方程得到a、b、c的齊次式可解.【詳解】如圖,因為與漸近線垂直所以的斜率為,方程為解的Q的坐標(biāo)為設(shè)P點坐標(biāo)為則,因為,所以,得點P坐標(biāo)為,代入得:所以,即所以漸近線方程為故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設(shè)可得,應(yīng)用累加法有,結(jié)合已知即可求.【詳解】由題設(shè),,所以,又,所以.故答案為:.14、①.##0.25②.6【解析】由題意知小老鼠每天打洞的距離是以1為首項,以為公比的等比數(shù)列,大老鼠每天打洞的距離是以1為首項,以2為公比的等比數(shù)列,即可算出小老鼠第三天穿城墻的厚度,再根據(jù)等比數(shù)列求和公式,構(gòu)造等式,即可得解.【詳解】由題意知,小老鼠每天打洞的距離是以1為首項,以為公比的等比數(shù)列,前天打洞之和為,∴小老鼠第三天穿城墻的厚度為;大老鼠每天打洞的距離是以1為首項,以2為公比的等比數(shù)列,前天打洞之和為,∴兩只老鼠第天打洞穿墻的厚度之和為,且數(shù)列為遞增數(shù)列,而,,又城墻厚40尺,所以這兩只老鼠至少6天相遇.故答案為:;6.15、.【解析】通過垂直于軸,可以求出,由已知為等腰三角形,可以得到,結(jié)合關(guān)系,可以得到一個關(guān)于離心率的一元二次方程,解方程求出離心率.【詳解】∵垂直于,∴可得,又∵為等腰三角形,∴,即,整理得,解得.【點睛】本題考查了求橢圓離心率問題,關(guān)鍵是通過已知條件構(gòu)造出關(guān)于離心率的方程.16、【解析】根據(jù)投影向量的知識求得正確答案.【詳解】空間向量在坐標(biāo)平面上的投影向量是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)當(dāng)時,求導(dǎo)得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當(dāng)且時,不滿足題意,故,又定義域為,講不等式化簡,參變分離后構(gòu)造新函數(shù),求導(dǎo)判斷單調(diào)性并求出最值,可得實數(shù)的取值范圍【詳解】(1)函數(shù)的定義域為,當(dāng)時,由,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;.且,故存在唯一的零點;(2)當(dāng)時,不滿足恒成立,故由定義域為,可得,令,則,則當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,故當(dāng)時,函數(shù)取得最大值(1),故實數(shù)的取值范圍是【點睛】方法點睛:本題考查函數(shù)零點的問題,考查導(dǎo)數(shù)的應(yīng)用,考查不等式的恒成立問題,關(guān)于恒成立問題的幾種常見解法總結(jié)如下:

參變分離法,將不等式恒成立問題轉(zhuǎn)化函數(shù)求最值問題;

主元變換法,把已知取值范圍的變量作為主元,把求取值范圍的變量看作參數(shù);

分類討論,利用函數(shù)的性質(zhì)討論參數(shù),分別判斷單調(diào)性求出最值;

數(shù)形結(jié)合法,將不等式兩端的式子分別看成兩個函數(shù),作出函數(shù)圖象,列出參數(shù)的不等式求解18、(1)(2)0,,.【解析】(1)根據(jù)題意得,進而求解得答案;(2)根據(jù)題意,分別討論與垂直,與垂直,與垂直求解,并檢驗即可得答案【小問1詳解】解:因為與的傾斜角互補,所以,直線變形為,故所以,解得【小問2詳解】解:由題意,若和垂直可得:,解得,因為當(dāng)時,,,,構(gòu)不成三角形,當(dāng)時,經(jīng)驗證符合題意;故;同理,若和垂直可得:,解得,舍去;若和垂直可得:,解得或,經(jīng)驗證符合題意;故m的值為:0,,.19、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩形和一個圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉(zhuǎn)化為同一個平面內(nèi)的直線夾角即可【小問1詳解】上下兩個扇形的面積之和為:兩個矩形面積之和為:4側(cè)面圓弧段的面積為:故這個幾何體的表面積為:【小問2詳解】如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點,則由于上下兩個平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為20、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標(biāo)分別為,當(dāng)直線AB或CD的斜率不存在時,點M的坐標(biāo)為或,當(dāng)直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當(dāng)直線或的斜率不存在時,點M的坐標(biāo)為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.21、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項公式.(Ⅱ)結(jié)合條件可得,分和兩種情況去掉中的絕對值后,利用數(shù)列的前n項和公式求解試題解析:(Ⅰ)∵成等比數(shù)列,∴,整理得,解得或,當(dāng)時,;當(dāng)時,所以或(Ⅱ)設(shè)數(shù)列前項和為,∵,∴,當(dāng)時,,∴;當(dāng)時,綜上22、(1)(2)存在,點為線段的靠近點的三等分點【解析】(1)根據(jù)題意證得平面,進而證得平面,得到平面,以點為坐標(biāo)原點,,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點,求得平面的法向量為,結(jié)合向量的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論