2026屆金太陽(yáng)廣東省高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁(yè)
2026屆金太陽(yáng)廣東省高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁(yè)
2026屆金太陽(yáng)廣東省高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁(yè)
2026屆金太陽(yáng)廣東省高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁(yè)
2026屆金太陽(yáng)廣東省高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆金太陽(yáng)廣東省高二上數(shù)學(xué)期末經(jīng)典試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.52.圓C:的圓心坐標(biāo)和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和3.如圖,已知直線AO垂直于平面,垂足為O,BC在平面內(nèi),AB與平面所成角的大小為,,,則異面直線AB與OC所成角的余弦值為()A. B.C. D.4.已知隨機(jī)變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.65.在四棱錐中,四邊形為菱形,平面,是中點(diǎn),下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面6.等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),且則的實(shí)軸長(zhǎng)為A.1 B.2C.4 D.87.已知直線與平行,則a的值為()A.1 B.﹣2C. D.1或﹣28.函數(shù),則的值為()A. B.C. D.9.已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則的值為()A. B.C. D.10.若函數(shù)在定義域上單調(diào)遞增,則實(shí)數(shù)的取值范圍為()A. B.C. D.11.設(shè)雙曲線:(,)的右頂點(diǎn)為,右焦點(diǎn)為,為雙曲線在第二象限上的點(diǎn),直線交雙曲線于另一個(gè)點(diǎn)(為坐標(biāo)原點(diǎn)),若直線平分線段,則雙曲線的離心率為()A. B.C. D.12.在中,、、所對(duì)的邊分別為、、,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)圓內(nèi)的點(diǎn)作一條直線,使它被該圓截得的線段最長(zhǎng),則直線的方程是______14.直線與圓相交于兩點(diǎn)M,N,若滿足,則________15.已知p:x>a是q:2<x<3的必要不充分條件,則實(shí)數(shù)a的取值范圍是______.16.如果方程表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)命題:函數(shù)有意義;命題:實(shí)數(shù)滿足.(1)當(dāng)且為真時(shí),求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.18.(12分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和.19.(12分)已知拋物線的焦點(diǎn)為F,其中P為E的準(zhǔn)線上一點(diǎn),O是坐標(biāo)原點(diǎn),且(1)求拋物線E的方程;(2)過(guò)的直線與E交于C,D兩點(diǎn),在x軸上是否存在定點(diǎn),使得x軸平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由20.(12分)已知三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點(diǎn)D,,求CD的長(zhǎng)21.(12分)已知圓C:x2+y2-2x+4y-4=0,問是否存在斜率是1的直線l,使l被圓C截得的弦AB,以AB為直徑的圓經(jīng)過(guò)原點(diǎn),若存在,寫出直線l的方程;若不存在,說(shuō)明理由.22.(10分)已知橢圓的短軸長(zhǎng)為2,左、右焦點(diǎn)分別為,,過(guò)且垂直于長(zhǎng)軸的弦長(zhǎng)為1(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若A,B為橢圓C上位于x軸同側(cè)的兩點(diǎn),且,共線,求四邊形的面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先畫出可行域,由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,求出點(diǎn)A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,由,得,即,所以的最大值為,故選:D2、C【解析】先將方程化為一般形式,再根據(jù)公式計(jì)算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為故選:C3、B【解析】建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),求出向量的坐標(biāo),再利用向量的夾角公式計(jì)算即可.【詳解】如圖,以O(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)O作OB的垂線為x軸,OB為y軸,OA為z軸,建立空間直角坐標(biāo)系,設(shè),則,,則,,,,,設(shè)的夾角為,則,所以異面直線AB與OC所成角的余弦值為,故選:B.4、D【解析】利用正態(tài)分布的計(jì)算公式:,【詳解】且又故選:D5、D【解析】利用反證法可判斷A選項(xiàng);利用面面垂直的性質(zhì)可判斷BC選項(xiàng);利用面面垂直的判定可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),因?yàn)樗倪呅螢榱庑?,則,平面,平面,平面,若平面,因?yàn)?,則平面平面,事實(shí)上,平面與平面相交,假設(shè)不成立,A錯(cuò);對(duì)于B選項(xiàng),過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),平面,平面,則,,,平面,而過(guò)作平面的垂線,有且只有一條,故與平面不垂直,B錯(cuò);對(duì)于C選項(xiàng),過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)槠矫妫矫?,則,,,則平面,若平面平面,過(guò)點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)槠矫嫫矫?,平面平面,平面,平面,而過(guò)點(diǎn)作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯(cuò);對(duì)于D選項(xiàng),因?yàn)樗倪呅螢榱庑危瑒t,平面,平面,,,平面,因?yàn)槠矫?,因此,平面平面平面,D對(duì).故選:D.6、B【解析】設(shè)等軸雙曲線的方程為拋物線,拋物線準(zhǔn)線方程為設(shè)等軸雙曲線與拋物線的準(zhǔn)線的兩個(gè)交點(diǎn),,則,將,代入,得等軸雙曲線的方程為的實(shí)軸長(zhǎng)為故選7、A【解析】根據(jù)題意可得,解之即可得解.【詳解】解:因?yàn)橹本€與平行,所以,解得.故選:A.8、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B9、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點(diǎn)在軸上,且,故.故選:B.10、D【解析】函數(shù)在定義域上單調(diào)遞增等價(jià)于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域?yàn)?,,在定義域上單調(diào)遞增等價(jià)于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.11、A【解析】由給定條件寫出點(diǎn)A,F(xiàn)坐標(biāo),設(shè)出點(diǎn)B的坐標(biāo),求出線段FC的中點(diǎn)坐標(biāo),由三點(diǎn)共線列式計(jì)算即得.【詳解】令雙曲線的半焦距為c,點(diǎn),設(shè),由雙曲線對(duì)稱性得,線段FC的中點(diǎn),因直線平分線段,即點(diǎn)D,A,B共線,于是有,即,即,離心率.故選:A12、B【解析】利用正弦定理,以及大邊對(duì)大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當(dāng)直線l過(guò)圓心時(shí)滿足題意,進(jìn)而求出答案.【詳解】圓的標(biāo)準(zhǔn)方程為:,圓心,當(dāng)l過(guò)圓心時(shí)滿足題意,,所以l的方程為:.故答案為:.14、【解析】由點(diǎn)到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長(zhǎng)公式可得,然后可解.【詳解】因?yàn)?,所以,所以,圓心到直線的距離因?yàn)?,所以,所以故答案為?5、【解析】根據(jù)充分性和必要性,求得參數(shù)取值范圍,即可求得結(jié)果.【詳解】因?yàn)閜:x>a是q:2<x<3的必要不充分條件,故集合為集合的真子集,故只需.故答案為:.16、【解析】化簡(jiǎn)橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,可得,解得,實(shí)數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)首先將命題,化簡(jiǎn),然后由為真可得,均為真,取交集即可求出實(shí)數(shù)的取值范圍;(2)將是的充分不必要條件轉(zhuǎn)化為是的必要不充分條件,進(jìn)而將問題轉(zhuǎn)化為,從而求出實(shí)數(shù)的取值范圍【詳解】(1)若命題為真,則,解得,當(dāng)時(shí),命題,若命題為真,則,解得,所以,因?yàn)闉檎妫?,均為真,所以,所以,所以?shí)數(shù)的取值范圍為(2)因?yàn)槭堑某浞植槐匾獥l件,所以是的必要不充分條件,所以,所以或,所以,所以實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題主要考查根據(jù)真值表判斷復(fù)合命題中的單個(gè)命題的真假,根據(jù)充分不必要條件求參數(shù)的取值范圍,同時(shí)考查一元二次不等式的解法,分式不等式的解法.第(2)問關(guān)鍵是將問題等價(jià)轉(zhuǎn)化為兩個(gè)集合間的真包含關(guān)系18、(1)(2)【解析】(Ⅰ)將數(shù)列中的項(xiàng)用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關(guān)于的一元二次方程可求得的值,即可得到數(shù)列的通項(xiàng)公式;(Ⅱ)根據(jù)(Ⅰ)可求得的通項(xiàng)公式,用分組求和法可得其前項(xiàng)和.試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為,因,且,,成等比數(shù)列,即,,成等比數(shù)列,所以有,即,解得或(舍去),所以,,數(shù)列的通項(xiàng)公式為.(Ⅱ)由(Ⅰ)知,所以.點(diǎn)睛:本題主要考查了等差數(shù)列,等比數(shù)列的概念,以及數(shù)列的求和,屬于高考中??贾R(shí)點(diǎn),難度不大;常見的數(shù)列求和的方法有公式法即等差等比數(shù)列求和公式,分組求和類似于,其中和分別為特殊數(shù)列,裂項(xiàng)相消法類似于,錯(cuò)位相減法類似于,其中為等差數(shù)列,為等比數(shù)列等.19、(1)(2)存在;【解析】(1)設(shè),利用向量坐標(biāo)運(yùn)算求出p即可;(2)設(shè)直線MC,MD的斜率分別為,,利用坐標(biāo)計(jì)算恒成立,即可求解.【小問1詳解】拋物線的焦點(diǎn)為,設(shè),則,因?yàn)?,所以,得所以拋物線E的方程為【小問2詳解】假設(shè)在x軸上存在定點(diǎn),使得x軸平分設(shè)直線的方程為,設(shè)點(diǎn),,聯(lián)立,可得∵恒成立,∴,設(shè)直線MC,MD的斜率分別為,,則由定點(diǎn),使得x軸平分,則,所以把根與系數(shù)的關(guān)系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點(diǎn),使得x軸平分20、(1)(2)【解析】(1)根據(jù)正弦定理邊角互化得,進(jìn)而得;(2)根據(jù)題意得,進(jìn)而在中,由余弦定理即可得答案.【小問1詳解】解:因?yàn)?,所以由正弦定理可得,所以,即,因?yàn)椋?,故,因?yàn)?,所以【小?詳解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得21、x-y-4=0或x-y+1="0."【解析】假設(shè)存在,并設(shè)出直線方程y=x+b,然后代入圓的方程得到關(guān)于x的一元二次方程,利用韋達(dá)定理得到根的關(guān)系,最后利用OA⊥OB即x1x2+y1y2=0,得到參數(shù)b的方程求解即可試題解析:設(shè)直線l的方程為y=x+b①圓C:x2+y2-2x+4y-4=0.②聯(lián)立①②消去y,得2x2+2(b+1)x+b2+4b-4=0設(shè)A(x1,y1),B(x2,y2),則有③因?yàn)橐訟B為直徑的圓經(jīng)過(guò)原點(diǎn),所以O(shè)A⊥OB,即x1x2+y1y2=0,而y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2,所以2x1x2+b(x1+x2)+b2=0,把③代入:b2+4b-4-b(b+1)+b2=0,即b2+3b-4=0,解得b=1或b=-4,故直線l存在,方程是x-y+1=0,或x-y-4=0考點(diǎn):存在性問題【方法點(diǎn)睛】存在性問題,首先應(yīng)假設(shè)存在,然后去求解.對(duì)本題來(lái)說(shuō)具體是:設(shè)出直線方程y=x+b,然后分析幾何性質(zhì)得到OA⊥OB即得到關(guān)于參數(shù)b方程求解即可.解該類問題最容易出錯(cuò)的的地方是,忽視對(duì)參數(shù)范圍的考慮,即直線方程與圓的方程聯(lián)立求解后應(yīng)得到,即求出的b值必須滿足b的范圍,否則無(wú)解22、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)延長(zhǎng),交橢圓C于點(diǎn).設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡(jiǎn)寫出根與系數(shù)關(guān)系,根據(jù)對(duì)稱性求得四邊形的面積的表達(dá)式,利用換元法,結(jié)合基本不等式求得四邊形的面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論