上海市長寧區(qū)市級(jí)名校2026屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁
上海市長寧區(qū)市級(jí)名校2026屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁
上海市長寧區(qū)市級(jí)名校2026屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁
上海市長寧區(qū)市級(jí)名校2026屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁
上海市長寧區(qū)市級(jí)名校2026屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市長寧區(qū)市級(jí)名校2026屆數(shù)學(xué)高二上期末檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“”的否定是()A. B.C. D.2.中,三邊長之比為,則為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不存在這樣的三角形3.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B.C. D.4.直線在y軸上的截距為()A.-1 B.1C. D.5.下列命題正確的是()A.經(jīng)過三點(diǎn)確定一個(gè)平面B.經(jīng)過一條直線和一個(gè)點(diǎn)確定一個(gè)平面C.四邊形確定一個(gè)平面D.兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面6.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.7.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為()A. B.C. D.8.我國古代數(shù)學(xué)典籍《四元玉鑒》中有如下一段話:“河有汛,預(yù)差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人9.過圓外一點(diǎn)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是A. B.C. D.10.設(shè)等差數(shù)列的前n項(xiàng)和為,且,則()A.64 B.72C.80 D.14411.已知橢圓的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),為軸上一點(diǎn),點(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且,則橢圓的離心率為()A. B.C. D.12.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線上的點(diǎn)到其焦點(diǎn)的最短距離為_________.14.在數(shù)列中,,,記是數(shù)列的前項(xiàng)和,則=___.15.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____16.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計(jì)算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點(diǎn),,,,若,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準(zhǔn)線與軸的交點(diǎn)為.(1)求的方程;(2)若過點(diǎn)的直線與拋物線交于,兩點(diǎn).請(qǐng)判斷是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.18.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別在上,且(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.19.(12分)已知函數(shù).(1)若,討論函數(shù)的單調(diào)性;(2)當(dāng)時(shí),求在區(qū)間上的最小值和最大值.20.(12分)如圖,在三棱柱中,,D為BC的中點(diǎn),平面平面ABC(1)證明:;(2)已知四邊形是邊長為2的菱形,且,問在線段上是否存在點(diǎn)E,使得平面EAD與平面EAC的夾角的余弦值為,若存在,求出CE的長度,若不存在,請(qǐng)說明理由21.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實(shí)數(shù)x的取值范圍.(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;22.(10分)解答下列兩個(gè)小題:(1)雙曲線:離心率為,且點(diǎn)在雙曲線上,求的方程;(2)雙曲線實(shí)軸長為2,且雙曲線與橢圓的焦點(diǎn)相同,求雙曲線的標(biāo)準(zhǔn)方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C2、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角為鈍角.【詳解】設(shè)三邊分別為,,,中的最大角為,,為鈍角,為鈍角三角形.故選:C.3、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.4、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A5、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對(duì)于A,過不在一條直線上三點(diǎn)才能確定一個(gè)平面,故A不正確;對(duì)于B,經(jīng)過一條直線和直線外一個(gè)點(diǎn)確定一個(gè)平面,故B不正確;對(duì)于C,空間四邊形不能確定一個(gè)平面,故C不正確;對(duì)于D,兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面,故D正確.故選:D6、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D7、C【解析】求解不等式,利用幾何概型的概率計(jì)算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計(jì)算公式可得:在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為.故選:.8、B【解析】根據(jù)題意,設(shè)每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項(xiàng),公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設(shè)第天派出的人數(shù)為,則是以65為首項(xiàng)、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B9、A【解析】過圓外一點(diǎn),引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程為,故選10、B【解析】利用等差數(shù)列下標(biāo)和性質(zhì),求得,再用等差數(shù)列前項(xiàng)和公式即可求解.【詳解】根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),,解得,.故選:B.11、D【解析】設(shè)橢圓的左焦點(diǎn)為,由橢圓的對(duì)稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點(diǎn)為,連接,因?yàn)椋?,如圖所示,所以,設(shè),,則,所以,故選:D.12、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助函數(shù)性質(zhì)計(jì)算作答.【詳解】拋物線的焦點(diǎn),設(shè)點(diǎn)為拋物線上任意一點(diǎn),于是有,當(dāng)且僅當(dāng)時(shí)取“=”,所以當(dāng),即點(diǎn)P為拋物線頂點(diǎn)時(shí),取最小值1.故答案為:114、930【解析】當(dāng)為偶數(shù)時(shí),,所以數(shù)列前60項(xiàng)中偶數(shù)項(xiàng)的和,當(dāng)為奇數(shù)時(shí),,因此數(shù)列是以1為首項(xiàng),公差為2等差數(shù)列,前60項(xiàng)中奇數(shù)項(xiàng)的和為,所以.考點(diǎn):遞推數(shù)列、等差數(shù)列.15、【解析】由已知求得母線長,代入圓錐側(cè)面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π故答案為2π【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.16、【解析】建立空間直角坐標(biāo)系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標(biāo)系,,,,,,則所以又因?yàn)樗怨蚀鸢笧椋喝?、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,定值為【解析】(1)由拋物線的準(zhǔn)線求標(biāo)準(zhǔn)方程;(2)直線與拋物線相交求定值,解聯(lián)立方程消未知數(shù),利用韋達(dá)定理,求線段長,再求它們的倒數(shù)的平方和.【小問1詳解】由題意,可得,即,故拋物線的方程為.【小問2詳解】為定值,且定值是.下面給出證明.證明:設(shè)直線的方程為,,,聯(lián)立拋物線有,消去得,則,又,.得因此為定值,且定值是.18、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進(jìn)而證明問題;(2)先證明平面,平面,進(jìn)而證明點(diǎn)P在兩個(gè)平面的交線上,然后證得結(jié)論.【小問1詳解】連接分別是的中點(diǎn),.在中,.所以四點(diǎn)共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.19、(1)在和上單調(diào)遞增,在上單調(diào)遞減.(2)答案見解析.【解析】(1)求解導(dǎo)函數(shù),并求出的兩根,得和的解集,從而得函數(shù)單調(diào)性;(2)由(1)得函數(shù)的單調(diào)性,從而得最小值,計(jì)算,再分類討論與兩種情況下的最大值.【小問1詳解】函數(shù)定義域?yàn)?,,時(shí),或,因?yàn)?,所以,時(shí),或,時(shí),,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】因?yàn)椋桑?)知,在上單調(diào)遞減,在上單調(diào)遞增,所以最小值為,又因?yàn)?,?dāng)時(shí),,此時(shí)最小值為,最大值為;當(dāng)時(shí),,此時(shí)最小值為,最大值為.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用20、(1)證明見解析(2)存在,1【解析】(1)由面面垂直證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,利用空間向量進(jìn)行求解.【小問1詳解】∵,且D為BC的中點(diǎn),∴,因?yàn)槠矫嫫矫鍭BC,交線為BC,AD⊥BC,AD面ABC,所以AD⊥面,因?yàn)槊妫?【小問2詳解】假設(shè)存在點(diǎn)E,滿足題設(shè)要求連接,,∵四邊形為邊長為2的菱形,且,∴為等邊三角形,∵D為BC的中點(diǎn)∴,∵平面平面ABC,交線為BC,面,所以面ABC,故以D為原點(diǎn),DC,DA,分別為x,y,z軸的空間直角坐標(biāo)系則,,,,設(shè),,設(shè)面AED的一個(gè)法向量為,則,令,則設(shè)面AEC的一個(gè)法向量為,則,令,則設(shè)平面EAD與平面EAC的夾角為,則解得:,故點(diǎn)E為中點(diǎn),所以21、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉(zhuǎn)化為集合的包含

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論