浙江省重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
浙江省重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
浙江省重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
浙江省重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
浙江省重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省重點中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平面直角坐標(biāo)系中,角的頂點與原點重合,角的始邊與軸非負(fù)半軸重合,角的終邊經(jīng)過點,則()A B.C. D.2.若無論實數(shù)取何值,直線與圓相交,則的取值范圍為()A. B.C. D.3.《易經(jīng)》是我國古代預(yù)測未來的著作,其中同時拋擲三枚古錢幣觀察正反面進行預(yù)測未知,則拋擲一次時出現(xiàn)兩枚正面一枚反面的概率為A. B.C. D.4.“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.已知集合,集合,則圖中陰影部分表示的集合為()A. B.C. D.6.已知點是角終邊上一點,則()A. B.C. D.7.已知函數(shù),若方程有三個不同的實數(shù)根,則實數(shù)的取值范圍是A. B.C. D.8.設(shè)函數(shù)若是奇函數(shù),則()A. B.C. D.19.設(shè)為上的奇函數(shù),且在上單調(diào)遞增,,則不等式的解集是()A B.C. D.10.祖暅原理也稱祖氏原理,一個涉及幾何求積的著名命題.內(nèi)容為:“冪勢既同,則積不容異”.“冪”是截面積,“勢”是幾何體的高.意思是兩個等高的幾何體,如在等高處的截面積相等,體積相等.設(shè)A,B為兩個等高的幾何體,p:A、B的體積相等,q:A、B在同一高處的截面積相等.根據(jù)祖暅原理可知,p是q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.邊長為2的菱形中,,將沿折起,使得平面平面,則二面角的余弦值為__________12.已知函數(shù),則_________13.集合的子集個數(shù)為______14.已知函數(shù)的圖像恒過定點,若點也在函數(shù)的圖像上,則__________15.若冪函數(shù)是偶函數(shù),則___________.16.計算:_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知為第四象限角,且,求下列各式的值(1);(2)18.已知函數(shù),1求的值;2若,,求19.如圖,已知矩形,,,點為矩形內(nèi)一點,且,設(shè).(1)當(dāng)時,求證:;(2)求的最大值.20.(1)計算(2)已知角的終邊過點,求角的三個三角函數(shù)值21.如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.(Ⅰ)證明:CD⊥平面PAE;(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)任意角的三角函數(shù)定義即可求解.【詳解】解:由題意知:角的終邊經(jīng)過點,故.故選:A.2、A【解析】利用二元二次方程表示圓的條件及點與圓的位置關(guān)系即得.【詳解】由圓,可知圓,∴,又∵直線,即,恒過定點,∴點在圓的內(nèi)部,∴,即,綜上,.故選:A.3、C【解析】用列舉法得出:拋擲三枚古錢幣出現(xiàn)的基本事件的總數(shù),進而可得出所求概率.【詳解】拋擲三枚古錢幣出現(xiàn)的基本事件共有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反8中,其中出現(xiàn)兩正一反的共有3種,故概率為.故選C【點睛】本題主要考查古典概型,熟記概率的計算公式即可,屬于??碱}型.4、A【解析】分別討論充分性與必要性,可得出答案.詳解】由題意,,顯然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要條件.故選:A.【點睛】本題考查充分不必要條件,考查不等式的性質(zhì),屬于基礎(chǔ)題.5、B【解析】由陰影部分表示的集合為,然后根據(jù)集合交集的概念即可求解.【詳解】因為陰影部分表示的集合為由于.故選:B.6、D【解析】利用任意角的三角函數(shù)的定義可求得的值,進而可得答案.【詳解】因為點是角終邊上一點,所以,所以.故選:D.7、A【解析】由得畫出函數(shù)的圖象如圖所示,且當(dāng)時,函數(shù)的圖象以為漸近線結(jié)合圖象可得當(dāng)?shù)膱D象與直線有三個不同的交點,故若方程有三個不同的實數(shù)根,實數(shù)的取值范圍是.選A點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決,如在本題中,方程根的個數(shù),即為直線與圖象的公共點的個數(shù);(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.8、A【解析】先求出的值,再根據(jù)奇函數(shù)的性質(zhì),可得到的值,最后代入,可得到答案.【詳解】∵奇函數(shù)故選:A【點睛】本題主要考查利用函數(shù)的奇偶性求值的問題,屬于基礎(chǔ)題.9、D【解析】根據(jù)函數(shù)單調(diào)性結(jié)合零點即可得解.【詳解】為上的奇函數(shù),且在上單調(diào)遞增,,得:或解得.故選:D10、C【解析】根據(jù)與的推出關(guān)系判斷【詳解】已知A,B為兩個等高的幾何體,由祖暅原理知,而不能推出,可舉反例,兩個相同的圓錐,一個正置,一個倒置,此時兩個幾何體等高且體積相等,但在同一高處的截面積不相等,則是的必要不充分條件故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】作,則為中點由題意得面作,連則為二面角的平面角故,,點睛:本題考查了由平面圖形經(jīng)過折疊得到立體圖形,并計算二面角的余弦值,本題關(guān)鍵在于先找出二面角的平面角,依據(jù)定義先找出平面角,然后根據(jù)各長度,計算得結(jié)果12、【解析】運用代入法進行求解即可.【詳解】,故答案為:13、32【解析】由n個元素組成的集合,集合的子集個數(shù)為個.【詳解】解:由題意得,則A的子集個數(shù)為故答案為:32.14、1【解析】首先確定點A的坐標(biāo),然后求解函數(shù)的解析式,最后求解的值即可.【詳解】令可得,此時,據(jù)此可知點A的坐標(biāo)為,點在函數(shù)的圖像上,故,解得:,函數(shù)的解析式為,則.【點睛】本題主要考查函數(shù)恒過定點問題,指數(shù)運算法則,對數(shù)運算法則等知識,意在考學(xué)生的轉(zhuǎn)化能力和計算求解能力.15、【解析】根據(jù)冪函數(shù)的定義得,解得或,再結(jié)合偶函數(shù)性質(zhì)得.【詳解】解:因為函數(shù)是冪函數(shù),所以,解得或,當(dāng)時,,為奇函數(shù),不滿足,舍;當(dāng)時,,為偶函數(shù),滿足條件.所以.故答案為:16、【解析】求出的值,求解計算即可.【詳解】故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先根據(jù)同角三角函數(shù)的關(guān)系求解可得,再根據(jù)同角三角函數(shù)的關(guān)系化簡即可(2)先根據(jù),再根據(jù)求解即可【小問1詳解】∵是第四象限角,∴,,又∵,∴,故∴(負(fù)值舍去),,∴故【小問2詳解】∵,∴18、(Ⅰ)=1;(Ⅱ)=【解析】(1)將代入可得:,在利用誘導(dǎo)公式和特殊角的三角函數(shù)值即可;(2)因為,根據(jù)兩角和的余弦公式需求出和,,,則,根據(jù)二倍角公式求出代入即可試題解析:(1)因為,所以;(2)因為,,則所以,考點:1.誘導(dǎo)公式;2.二倍角公式;3.兩角和余弦19、(1)見解析(2)【解析】(1)以為坐標(biāo)原點建立平面直角坐標(biāo)系,求出各點的坐標(biāo),即得,得證;(2)由三角函數(shù)的定義可設(shè),,再利用三角函數(shù)的圖像和性質(zhì)求解.【詳解】以為坐標(biāo)原點建立平面直角坐標(biāo)系,則,,,.當(dāng)時,,則,,∴.∴.(2)由三角函數(shù)的定義可設(shè),則,,,從而,所以,因為,故當(dāng)時,取得最大值2.【點睛】本題主要考查平面向量的坐標(biāo)表示和運算,考查向量垂直的坐標(biāo)表示,考查平面向量的數(shù)量積運算和三角恒等變換,考查三角函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.20、(1);(2),,【解析】(1)根據(jù)指數(shù)、對數(shù)運算性質(zhì)求解即可.(2)根據(jù)三角函數(shù)定義求解即可.【詳解】(1).(2)由題知:,所以,,21、(1)證明略(2)【解析】(Ⅰ)要證平面,由已知平面,已經(jīng)有,因此在直角梯形中證明即可,通過計算得,而是中點,則有;(Ⅱ)PB與平面ABCD所成的角是,下面關(guān)鍵是作出PB與平面PAE所成的角,由(Ⅰ)作,分別與相交于,連接,則是PB與平面PAE所成的角,由這兩個角相等,可得,同樣在直角梯形中可計算出,也即四棱錐P-ABCD的高,體積可得.另外也可建立空間直角坐標(biāo)系,通過空間向量法求得結(jié)論,第(Ⅱ)小題中關(guān)鍵是求點的坐標(biāo),注意這里直線與平面所成的角相等轉(zhuǎn)化為直線與平面的法向量的夾角相等試題解析:解法1(Ⅰ如圖(1)),連接AC,由AB=4,,是的中點,所以所以而內(nèi)的兩條相交直線,所以CD⊥平面PAE(Ⅱ)過點B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是為直線PB與平面PAE所成的角,且由知,為直線與平面所成的角由題意,知因為所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論