北京市牛山一中2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
北京市牛山一中2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
北京市牛山一中2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
北京市牛山一中2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
北京市牛山一中2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市牛山一中2026屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.2.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.3.已知分別是等差數(shù)列的前項(xiàng)和,且,則()A. B.C. D.4.點(diǎn)在圓上,點(diǎn)在直線上,則的最小值是()A. B.C. D.5.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.36.如圖,用隨機(jī)模擬方法近似估計(jì)在邊長(zhǎng)為e(e為自然對(duì)數(shù)的底數(shù))的正方形中陰影部分的面積,先產(chǎn)生兩組區(qū)間上的隨機(jī)數(shù)和,因此得到1000個(gè)點(diǎn)對(duì),再統(tǒng)計(jì)出落在該陰影部分內(nèi)的點(diǎn)數(shù)為260個(gè),則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.927.過(guò)拋物線的焦點(diǎn)F的直線l與拋物線交于PQ兩點(diǎn),若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.58.已知圓O的半徑為5,,過(guò)點(diǎn)P的2021條弦的長(zhǎng)度組成一個(gè)等差數(shù)列,最短弦長(zhǎng)為,最長(zhǎng)弦長(zhǎng)為,則其公差為()A. B.C. D.9.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.10.如圖,橢圓的右焦點(diǎn)為,過(guò)與軸垂直的直線交橢圓于第一象限的點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,且,,則橢圓方程為()A. B.C. D.11.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.12.對(duì)于圓上任意一點(diǎn)的值與x,y無(wú)關(guān),有下列結(jié)論:①當(dāng)時(shí),r有最大值1;②在r取最大值時(shí),則點(diǎn)的軌跡是一條直線;③當(dāng)時(shí),則.其中正確的個(gè)數(shù)是()A.3 B.2C.1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.與雙曲線有共同的漸近線,并且經(jīng)過(guò)點(diǎn)的雙曲線方程是______14.在空間直角坐標(biāo)系中,已知,,,,則___________.15.橢圓的弦被點(diǎn)平分,則這條弦所在的直線方程是________16.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來(lái)人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為_(kāi)_________.(答案寫(xiě)成標(biāo)準(zhǔn)方程),的最小值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.18.(12分)如圖,中,且,將沿中位線EF折起,使得,連結(jié)AB,AC,M為AC的中點(diǎn).(1)證明:平面ABC;(2)求二面角的余弦值.19.(12分)已知的展開(kāi)式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大(1)求n的值;(2)求展開(kāi)式中含的項(xiàng)20.(12分)已知拋物線的準(zhǔn)線方程是,直線與拋物線相交于M、N兩點(diǎn)(1)求拋物線的方程;(2)求弦長(zhǎng);(3)設(shè)O為坐標(biāo)原點(diǎn),證明:21.(12分)已知?jiǎng)訄A過(guò)點(diǎn),且與直線:相切(1)求動(dòng)圓圓心的軌跡方程;(2)若過(guò)點(diǎn)且斜率的直線與圓心的軌跡交于兩點(diǎn),求線段的長(zhǎng)度22.(10分)如圖,在直三棱柱中,,,與交于點(diǎn),為的中點(diǎn),(1)求證:平面;(2)求證:平面平面

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分離參數(shù),求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)有兩個(gè)零點(diǎn)可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個(gè)零點(diǎn)令,則且所以,在上為增函數(shù),可得,當(dāng),在上單調(diào)遞減,可得,即要有兩個(gè)零點(diǎn)有兩個(gè)零點(diǎn),實(shí)數(shù)的取值范圍是.故選:A【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解2、A【解析】利用對(duì)立事件概率公式可求得所求事件的概率.【詳解】由對(duì)立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.3、D【解析】利用及等差數(shù)列的性質(zhì)進(jìn)行求解.【詳解】分別是等差數(shù)列的前項(xiàng)和,故,且,故,故選:D4、B【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.5、C【解析】由可得出,利用空間向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于實(shí)數(shù)的等式,由此可解得實(shí)數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C6、D【解析】根據(jù)幾何概型的概率公式即可直接求出答案.【詳解】易知,根據(jù)幾何概型的概率公式,得,所以.故選:D.7、C【解析】依據(jù)拋物線定義可以證明:以過(guò)拋物線焦點(diǎn)F的弦PQ為直徑的圓與其準(zhǔn)線相切,則可以順利求得線段的長(zhǎng).【詳解】拋物線的焦點(diǎn)F,準(zhǔn)線取PQ中點(diǎn)H,分別過(guò)P、Q、H作拋物線準(zhǔn)線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點(diǎn)H到拋物線準(zhǔn)線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準(zhǔn)線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C8、B【解析】可得過(guò)點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,最短弦長(zhǎng)為過(guò)點(diǎn)P的與垂直的弦,分別求出即可得出公差.【詳解】可得過(guò)點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,,最短弦長(zhǎng)為過(guò)點(diǎn)P的與垂直的弦,,公差.故選:B.9、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.10、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點(diǎn)為,連結(jié),由橢圓的對(duì)稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡(jiǎn)單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時(shí),關(guān)鍵是求解基本量,,.11、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計(jì)算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見(jiàn)三視圖,,,故選:B12、B【解析】可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無(wú)關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無(wú)關(guān),圓在兩直線內(nèi)部,則,的距離為,則,,對(duì)于①,當(dāng)時(shí),r有最大值1,得出結(jié)論;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,得出結(jié)論;對(duì)于③當(dāng)時(shí),則得出結(jié)論.【詳解】設(shè),故可以看作點(diǎn)到直線與直線距離之和的倍,的取值與,無(wú)關(guān),這個(gè)距離之和與點(diǎn)在圓上的位置無(wú)關(guān),可知直線平移時(shí),點(diǎn)與直線,的距離之和均為,的距離,即此時(shí)圓在兩直線內(nèi)部,,的距離為,則,對(duì)于①,當(dāng)時(shí),r有最大值1,正確;對(duì)于②在r取最大值時(shí),則點(diǎn)的軌跡是一條平行與,的直線,正確;對(duì)于③當(dāng)時(shí),則即,解得或,故錯(cuò)誤.故正確結(jié)論有2個(gè),故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)雙曲線的方程為,將點(diǎn)代入方程可求的值,從而可得結(jié)果【詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過(guò)點(diǎn),所求的雙曲線方程為:,整理得故答案為【點(diǎn)睛】本題考查雙曲線的方程與簡(jiǎn)單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識(shí)解答問(wèn)題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.14、或##或【解析】根據(jù)向量平行時(shí)坐標(biāo)的關(guān)系和向量的模公式即可求解.【詳解】,且,設(shè),,解得,或.故答案為:或.15、2x+4y-3=0【解析】設(shè)弦端點(diǎn)為,又A,B在橢圓上,、即直線AB的斜率為直線AB的方程為,.16、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對(duì)化簡(jiǎn),結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡(jiǎn)得,即.因?yàn)?,所以因?yàn)辄c(diǎn)P在圓上,故所以,故的最小值為.故答案為:,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號(hào)后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導(dǎo)數(shù)可證不等式.【小問(wèn)1詳解】函數(shù)的定義域?yàn)?,且,?dāng)時(shí),在上恒成立,所以此時(shí)在上為增函數(shù),當(dāng)時(shí),由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當(dāng)時(shí),在上為增函數(shù),當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù);【小問(wèn)2詳解】由(1)知:當(dāng)時(shí),在上為增函數(shù),無(wú)最小值.當(dāng)時(shí),在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.18、(1)證明見(jiàn)解析(2)【解析】(1)由勾股定理以及等腰三角形的性質(zhì)得出,,再由線面垂直的判定證明即可;(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,由向量法得出面面角.【小問(wèn)1詳解】設(shè),則,,平面平面,連接,,,,,即又,平面ABC【小問(wèn)2詳解】,以點(diǎn)為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系設(shè)平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.19、(1)10;(2);【解析】(1)利用二項(xiàng)式系數(shù)的性質(zhì)即可求出的值;(2)求出展開(kāi)式的通項(xiàng)公式,然后令的指數(shù)為即可求解【小問(wèn)1詳解】∵的展開(kāi)式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,∴展開(kāi)后一共有11項(xiàng),則,解得;【小問(wèn)2詳解】二項(xiàng)式的展開(kāi)式的通項(xiàng)公式為,令,解得,∴展開(kāi)式中含的項(xiàng)為20、(1);(2);(3)詳見(jiàn)解析.【解析】(1)根據(jù)拋物線的準(zhǔn)線方程求解;(2)由直線方程與拋物線方程聯(lián)立,利用弦長(zhǎng)公式求解;(3)結(jié)合韋達(dá)定理,利用數(shù)量積運(yùn)算證明;【小問(wèn)1詳解】解:因?yàn)閽佄锞€的準(zhǔn)線方程是,所以,解得,所以拋物線的方程是;【小問(wèn)2詳解】由,得,設(shè),則,所以;【小問(wèn)3詳解】因?yàn)?,,,所以,?21、(1);(2).【解析】(1)由題意分析圓心符合拋物線定義,然后求軌跡方程;(2)直接聯(lián)立方程組,求出弦長(zhǎng).【詳解】解:(1)圓過(guò)點(diǎn),且與直線相切點(diǎn)到直線的距離等于由拋物線定義可知點(diǎn)的軌跡是以為焦點(diǎn)、以為準(zhǔn)線的拋物線,依題意,設(shè)點(diǎn)的軌跡方程為,則,解得,所以,動(dòng)圓圓心的軌跡方程是(2)依題意可知直線,設(shè)聯(lián)立,得,則,所以,線段的長(zhǎng)度為【點(diǎn)睛】(1)待定系數(shù)法、代入法可以求二次曲線的標(biāo)準(zhǔn)方程;(2)“設(shè)而不求”是一種在解析幾何中常見(jiàn)的解題方法,可以解決直線與二次曲線相交的問(wèn)題.22、(1)證明見(jiàn)解析(2)證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論