2026屆廣西玉林市北流實驗中學高一數(shù)學第一學期期末復習檢測試題含解析_第1頁
2026屆廣西玉林市北流實驗中學高一數(shù)學第一學期期末復習檢測試題含解析_第2頁
2026屆廣西玉林市北流實驗中學高一數(shù)學第一學期期末復習檢測試題含解析_第3頁
2026屆廣西玉林市北流實驗中學高一數(shù)學第一學期期末復習檢測試題含解析_第4頁
2026屆廣西玉林市北流實驗中學高一數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣西玉林市北流實驗中學高一數(shù)學第一學期期末復習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用斜二測畫法畫一個水平放置的平面圖形的直觀圖是如圖所示的一個正方形,則原來的圖形是()A. B.C. D.2.函數(shù)的零點所在的區(qū)間為()A. B.C. D.3.已知,,若對任意,或,則的取值范圍是A. B.C. D.4.設是定義在R上的奇函數(shù),當時,(b為常數(shù)),則的值為()A.﹣6 B.﹣4C.4 D.65.已知角的終邊經(jīng)過點,則A. B.C.-2 D.6.已知函數(shù)是定義在實數(shù)集上的不恒為零的偶函數(shù),且對任意實數(shù)都有,則的值為A. B.C. D.7.已知集合,,,則()A. B.C. D.8.用斜二測畫法畫一個水平放置的平面圖形的直觀圖為如圖所示的直角梯形,其中BC=AB=2,則原平面圖形的面積為()A. B.C. D.9.關于的不等式對任意恒成立,則實數(shù)的取值范圍是()A. B.C. D.10.設函數(shù)滿足,的零點為,則下列選項中一定錯誤的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某種商品在第天的銷售價格(單位:元)為,第x天的銷售量(單位:件)為,則第14天該商品的銷售收入為________元,在這30天中,該商品日銷售收入的最大值為________元.12.已知集合(1)當時,求的非空真子集的個數(shù);(2)當時,若,求實數(shù)的取值范圍13.若函數(shù)在區(qū)間內(nèi)為減函數(shù),則實數(shù)a的取值范圍為___________.14.兩條直線與互相垂直,則______15.已知是定義在上的奇函數(shù),當時,,函數(shù)如果對,,使得,則實數(shù)m的取值范圍為______16.不等式tanx+三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)解不等式:;(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;(3)若函數(shù)的反函數(shù)為,且,其中為奇函數(shù),為偶函數(shù),試比較與的大小.18.化簡求值:(1)已知,求的值;(2)19.已知函數(shù)(1)求函數(shù)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù)在上的值域20.中國茶文化博大精深,茶水的口感與茶葉類型和茶水的溫度有關.經(jīng)驗表明,某種綠茶,用一定溫度的水泡制,再等到茶水溫度降至某一溫度時,可以產(chǎn)生最佳口感.某研究員在泡制茶水的過程中,每隔1min測量一次茶水溫度,收集到以下數(shù)據(jù):時間/min012345水溫/℃85.0079.0073.6068.7464.3660.42設茶水溫度從85°C開始,經(jīng)過tmin后溫度為y℃,為了刻畫茶水溫度隨時間變化的規(guī)律,現(xiàn)有以下兩種函數(shù)模型供選擇:①;②(1)選出你認為最符合實際的函數(shù)模型,說明理由,并參考表格中前3組數(shù)據(jù),求出函數(shù)模型的解析式;(2)若茶水溫度降至55℃時飲用,可以產(chǎn)生最佳口感,根據(jù)(1)中的函數(shù)模型,剛泡好的茶水大約需要放置多長時間才能達到最佳飲用口感?(參考數(shù)據(jù):,)21.已知二次函數(shù),滿足,.(1)求函數(shù)的解析式;(2)求在區(qū)間上的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由斜二測畫法的規(guī)則知與x'軸平行或重合的線段與x’軸平行或重合,其長度不變,與y軸平行或重合的線段與x’軸平行或重合,其長度變成原來的一半,正方形的對角線在y'軸上,可求得其長度為,故在平面圖中其在y軸上,且其長度變?yōu)樵瓉淼?倍,長度為2,觀察四個選項,A選項符合題意.故應選A考點:斜二測畫法點評:注意斜二測畫法中線段長度的變化2、C【解析】分析函數(shù)的單調(diào)性,再利用零點存在性定理判斷作答.【詳解】函數(shù)的定義域為,且在上單調(diào)遞增,而,,所以函數(shù)的零點所在的區(qū)間為.故選:C3、C【解析】先判斷函數(shù)g(x)的取值范圍,然后根據(jù)或成立求得m的取值范圍.【詳解】∵g(x)=﹣2,當x<時,恒成立,當x≥時,g(x)≥0,又∵?x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立,即m(x﹣2m)(x+m+3)<0在x≥時恒成立,則二次函數(shù)y=m(x﹣2m)(x+m+3)圖象開口只能向下,且與x軸交點都在(,0)的左側(cè),∴,即,解得<m<0,∴實數(shù)m的取值范圍是:(,0)故選C【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的圖象和性質(zhì),根據(jù)條件確定f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立是解決本題的關鍵,綜合性較強,難度較大4、B【解析】根據(jù)函數(shù)是奇函數(shù),可得,求得,結(jié)合函數(shù)的解析式即可得出答案.【詳解】解:因為是定義在R上的奇函數(shù),當時,,,解得所以.故選:B.5、B【解析】按三角函數(shù)的定義,有.6、A【解析】方法一:當且時,由,得,令,則是周期為的函數(shù),所以,當時,由得,,又是偶函數(shù),所以,所以,所以,所以.選A方法二:當時,由得,,即,同理,所以又當時,由,得,因為是偶函數(shù),所以,所以.選A點睛:解決抽象函數(shù)問題的兩個注意點:(1)對于抽象函數(shù)的求函數(shù)值的問題,可選擇定義域內(nèi)的恰當?shù)闹登蠼?,即要善于用取特殊值的方法求解函?shù)值(2)由于抽象函數(shù)的解析式未知,故在解題時要合理運用條件中所給出的性質(zhì)解題,有時在解題需要作出相應的變形7、C【解析】解一元二次不等式求出集合,解不等式求出集合,再進行交集運算即可求解.【詳解】因為,,所以,故選:C.8、C【解析】先求出直觀圖中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原圖形是一個直角梯形和各個邊長及高,直接求面積即可.【詳解】直觀圖中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原來的平面圖形上底長為2,下底為4,高為的直角梯形,∴該平面圖形的面積為.故選:C9、B【解析】當時可知;當時,采用分離變量法可得,結(jié)合基本不等式可求得;綜合兩種情況可得結(jié)果.【詳解】當時,不等式為恒成立,;當時,不等式可化為:,,(當且僅當,即時取等號),;綜上所述:實數(shù)的取值范圍為.故選:B.10、C【解析】根據(jù)函數(shù)的解析式,結(jié)合零點的存在定理,進行分類討論判定,即可求解.【詳解】由題意,函數(shù)的定義域為,且的零點為,即,解得,又因為,可得中,有1個負數(shù)、兩個正數(shù),或3個都負數(shù),若中,有1個負數(shù)、兩個正數(shù),可得,即,根據(jù)零點的存在定理,可得或;若中,3個都是負數(shù),則滿足,即,此時函數(shù)的零點.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、①.448②.600【解析】銷售價格與銷售量相乘即得收入,對分段函數(shù),可分段求出最大值,然后比較【詳解】由題意可得(元),即第14天該商品的銷售收入為448元.銷售收入,,即,.當時,,故當時,y取最大值,,當時,易知,故當時,該商品日銷售收入最大,最大值為600元.故答案為:448;600.【點睛】本題考查分段函數(shù)模型的應用.根據(jù)所給函數(shù)模型列出函數(shù)解析式是基本方法12、(1)30(2)或【解析】(1)當時,可得中元素的個數(shù),進而可得的非空真子集的個數(shù);(2)根據(jù),可分和兩種情況討論,可得出實數(shù)的取值范圍【小問1詳解】當時,,共有5個元素,所以的非空真子集的個數(shù)為【小問2詳解】(1)當時,,解得;(2)當時,根據(jù)題意作出如圖所示的數(shù)軸,可得或解得:或綜上可得,實數(shù)的取值范圍是或13、【解析】由復合函數(shù)單調(diào)性的判斷法則及對數(shù)函數(shù)的真數(shù)大于0恒成立,列出不等式組求解即可得答案.【詳解】解:因為,函數(shù)在區(qū)間內(nèi)為減函數(shù),所以有,解得,所以實數(shù)a的取值范圍為,故答案為:.14、【解析】先分別求出兩條直線的斜率,再利用兩條直線垂直的充要條件是斜率乘積等于,即可求出結(jié)果【詳解】直線的斜率,直線的斜率,且兩直線與互相垂直,,,解得,故答案為【點睛】本題主要考查兩直線垂直的充要條件,屬于基礎題.在兩條直線的斜率都存在的條件下,兩條直線垂直的充要條件是斜率乘積等于15、【解析】先求出時,,,然后解不等式,即可求解,得到答案【詳解】由題意,可知時,為增函數(shù),所以,又是上的奇函數(shù),所以時,,又由在上的最大值為,所以,,使得,所以.故答案為【點睛】本題主要考查了函數(shù)的奇偶性的判定與應用,以及函數(shù)的最值的應用,其中解答中轉(zhuǎn)化為是解答的關鍵,著重考查了轉(zhuǎn)化思想,推理與運算能力,屬于基礎題.16、kπ,π4【解析】根據(jù)正切函數(shù)性質(zhì)求解、【詳解】由正切函數(shù)性質(zhì),由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案為:[kπ,kπ+π4三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2);(3)【解析】(1)根據(jù)二次不等式和對數(shù)不等式的解法求解即可得到所求;(2)由可得,故所求范圍即為函數(shù)在區(qū)間上的值域,根據(jù)換元法求出函數(shù)的值域即可;(3)根據(jù)題意可求出,進而得到和,于是可得大小關系【詳解】(1)由,得或,即或,解得,所以原不等式的解集為(2)令,得令,由,得,則,其中令,則在上單調(diào)遞增,所以,即,所以.故實數(shù)的取值范圍為(3)由題意得,即,因此,因為為奇函數(shù),為偶函數(shù),所以,解得,所以,,因此另法:,所以【點睛】(1)本題考查函數(shù)知識的綜合運用,解題時要注意函數(shù)、方程、不等式間的關系的應用,根據(jù)條件及要求合理求解(2)解決函數(shù)零點問題時,可轉(zhuǎn)化為方程解得問題處理,也可利用分離變量的方法求解,轉(zhuǎn)化為求具體函數(shù)值域的問題,解題時注意轉(zhuǎn)化的合理性和等價性18、(1)(2)【解析】(1)先用誘導公式化簡,再用同角三角函數(shù)的平方關系求解;(2)先用誘導公式化簡,再代入特殊三角函數(shù)值計算即可.【小問1詳解】;【小問2詳解】19、(1)最小正周期為;單調(diào)遞增區(qū)間為;(2)【解析】(1)利用二倍角和輔助角公式化簡得到,由解析式可確定最小正周期;令,解不等式可求得單調(diào)遞增區(qū)間;(2)利用可求得的范圍,對應正弦函數(shù)可確定的范圍,進而得到所求值域.【詳解】(1),的最小正周期;令,解得:,的單調(diào)遞增區(qū)間為;(2)當時,,,,即在上的值域為.20、(1);(2)【解析】(1)根據(jù)表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室溫,所以選擇模型①,再列出三個方程,解出,即可得到函數(shù)模型的解析式;(2)令,即可求解得出【小問1詳解】由表中數(shù)據(jù)可知,隨著時間的變化,溫度越來越低直至室

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論