版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
陜西咸陽武功縣普集高級中學2026屆高二上數(shù)學期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B.C. D.2.《九章算術》中,將四個面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.3.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.4.已知,,則的最小值為()A. B.C. D.5.圓與直線的位置關系為()A.相切 B.相離C.相交 D.無法確定6.如圖,在四面體中,,,,點為的中點,,則()A. B.C. D.7.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.8.設等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.269.《九章算術》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.10.設,,,…,,,則()A. B.C. D.11.已知向量,,則下列向量中,使能構成空間的一個基底的向量是()A. B.C. D.12.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則輸入的的值可能為()A.96 B.97C.98 D.99二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù),其導函數(shù)為函數(shù),則__________14.若正實數(shù)滿足則的最小值為________________________15.若拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是___________.16.已知、是空間內(nèi)兩個單位向量,且,如果空間向量滿足,且,,則對于任意的實數(shù)、,的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:經(jīng)過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由18.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項;(Ⅱ)求數(shù)列的前n項和Sn.19.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標準方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標;否則,請說明理由.20.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.21.(12分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值22.(10分)已知數(shù)列,,,為其前n項和,且滿足.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.2、A【解析】根據(jù)平面,平面求解.【詳解】因為平面,平面,所以,又,,,所以,所以,故選:A3、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.4、B【解析】將代數(shù)式展開,然后利用基本不等式可求出該代數(shù)式的最小值.【詳解】,,由基本不等式得,當且僅當時,等號成立.因此,的最小值為.故選B.【點睛】本題考查利用基本不等式求最值,在利用基本不等式時要注意“一正、二定、三相等”條件的成立,考查計算能力,屬于中等題.5、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關系為相交.故選:C6、B【解析】利用插點的方法,將歸結到題目中基向量中去,注意中線向量的運用.【詳解】.故選:B.7、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學生對于不等式知識的綜合應用.8、A【解析】根據(jù)給定條件利用韋達定理結合等差數(shù)列性質(zhì)計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A9、C【解析】建立坐標系,坐標表示向量,求出點坐標,進而求出結果.【詳解】以為坐標原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C10、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B11、D【解析】根據(jù)向量共面基本定理只需無解即可滿足構成空間向量基底,據(jù)此檢驗各選項即可得解.【詳解】因為,所以A中的向量不能與,構成基底;因為,所以B中的向量不能與,構成基底;對于,設,則,解得,,所以,故,,為共面向量,所以C中的向量不能與,構成基底;對于,設,則,此方程組無解,所以,,不共面,故D中的向量與,可以構成基底.故選:D12、D【解析】根據(jù)程序框圖得出的變換規(guī)律后求解【詳解】當時,,當時,,當時,,當時,,可得輸出的T關于t的變換周期為4,而,故時,輸出的值為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)解析式,可求得解析式,代入數(shù)據(jù),即可得答案.詳解】∵,∴,∴.故答案為:.14、【解析】利用基本不等式即可求解.【詳解】,,又,,,當且僅當即,等號成立,.故答案為:【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.15、5【解析】根據(jù)拋物線的定義知點P到焦點距離等于到準線的距離即可求解.【詳解】因為拋物線方程為,所以準線方程,所以點到準線的距離為,故點到該拋物線焦點的距離.故答案為:16、【解析】根據(jù)已知可設,,,根據(jù)已知條件求出、、的值,將向量用坐標加以表示,利用空間向量的模長公式可求得的最小值.【詳解】因為、是空間內(nèi)兩個單位向量,且,所以,,因為,則,不妨設,,設,則,,解得,則,因為,可得,則,所以,,當且僅當時,即當時,等號成立,因此,對于任意的實數(shù)、,的最小值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達出△AOB的面積,利用基本不等式求出的取值范圍,進而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設存在⊙O:滿足題意,①切線方程l的斜率存在時,設切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設,,由題意知,(*)有兩解所以,即由根與系數(shù)的關系可得,所以因為,所以,即化簡得,且,O到直線l的距離所以,又,此時,所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因為當k≠0時當且僅當即時取等號又因為,所以,所以當k=0時,②斜率不存在時,直線與橢圓交于兩點或兩點易知存在圓的方程為⊙O:且綜上,所以【點睛】求解圓錐曲線相關的三角形或四邊形面積取值范圍問題,需要先設出變量,表達出面積,利用基本不等式或者配方,導函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.18、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項和公式等基本知識(Ⅰ)由題設知公差由成等比數(shù)列得解得(舍去),故的通項(Ⅱ)由(Ⅰ)知,由等比數(shù)列前n項和公式得點評:本試題題目條件給的比較清晰,直接.只要抓住概念就可以很好的解決19、(1)(2)恒過點【解析】(1)設為橢圓上的點,根據(jù)橢圓的性質(zhì)得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當時直線過點,故舍去,所以,則直線恒過點;20、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標系,求得平面向量的法向量和相應點的坐標,利用點面距離公式即可求得點面距離(2)假設滿足題意的點存在且滿足,由題意得到關于的方程,解方程即可確定滿足題意的點是否存在【小問1詳解】解:如圖所示,取中點,連結,,因為三角形是等腰直角三角形,所以,因為面面,面面面,所以平面,又因為,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標系,則:據(jù)此可得,設平面的一個法向量為,則,令可得,從而,又,故求點到平面的距離【小問2詳解】解:假設存在點,,滿足題意,點在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點,點為的中點,即21、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質(zhì),證得平面,進而可得,平面即可得證;(2)在平面ABC內(nèi)過點A作Ax⊥AB,以A為原點建立空間直角坐標系,借助空間向量而得解.【詳解】(1)因為,為中點,所以,因為是矩形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC內(nèi)過點A作Ax⊥AB,由(1)知,平面,故以點A為坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車間級安全教育內(nèi)容課件
- 銀行員工獎懲管理制度
- 車間生產(chǎn)安全員培訓內(nèi)容課件
- 車間工人安全帶培訓材料課件
- 車間安全操作規(guī)范培訓課件
- 車間安全培訓需求調(diào)查表課件
- 車間安全培訓總結課件
- 市場原因停工申請報告(3篇)
- 車間安全員管理培訓課件
- 2026年足療機項目投資計劃書
- 液流電池制造項目可行性研究報告
- 組織文化與員工滿意度
- GB/T 46075.1-2025電子束焊機驗收檢驗第1部分:原則與驗收條件
- DB21-T 1844-2022 保溫裝飾板外墻外保溫工程技術規(guī)程
- 艾梅乙安全助產(chǎn)培訓課件
- (2025年標準)sm調(diào)教協(xié)議書
- 2025秋季學期國開電大法律事務??啤睹穹▽W(1)》期末紙質(zhì)考試多項選擇題題庫珍藏版
- 省外實習管理辦法
- 合肥168招聘數(shù)學試卷
- 車輛無租金租賃合同范本
- 人力賦能春節(jié)營銷
評論
0/150
提交評論