2026屆福建省莆田市仙游縣郊尾中學數(shù)學高二上期末質量檢測模擬試題含解析_第1頁
2026屆福建省莆田市仙游縣郊尾中學數(shù)學高二上期末質量檢測模擬試題含解析_第2頁
2026屆福建省莆田市仙游縣郊尾中學數(shù)學高二上期末質量檢測模擬試題含解析_第3頁
2026屆福建省莆田市仙游縣郊尾中學數(shù)學高二上期末質量檢測模擬試題含解析_第4頁
2026屆福建省莆田市仙游縣郊尾中學數(shù)學高二上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆福建省莆田市仙游縣郊尾中學數(shù)學高二上期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設點關于坐標原點的對稱點是B,則等于()A.4 B.C. D.22.定義在上的函數(shù)的導函數(shù)為,若對任意實數(shù),有,且為奇函數(shù),則不等式解集是A. B.C. D.3.過點,且斜率為2的直線方程是A. B.C. D.4.一動圓與圓外切,而與圓內切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支5.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件6.在下列四條拋物線中,焦點到準線的距離為1的是()A. B.C. D.7.三等分角是“古希臘三大幾何問題”之一,數(shù)學家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.8.數(shù)列中,滿足,,設,則()A. B.C. D.9.在中,內角的對邊分別為,若,則角為A. B.C. D.10.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.611.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形12.對任意實數(shù),在以下命題中,正確的個數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,…,為拋物線:上的點,為拋物線的焦點.在等比數(shù)列中,,,,…,.則的橫坐標為__________14.動點M在圓上移動,則M與定點連線的中點P的軌跡方程為___________.15.寫出一個與橢圓有公共焦點的橢圓方程__________16.點在以,為焦點的橢圓上運動,則的重心的軌跡方程是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?(3)在(2)的前提下,從抽到6名學生中再隨機抽取2名被甲考官面試,求這2名學生來自同一組的概率.18.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積19.(12分)求適合下列條件的橢圓的標準方程:(1)經過點,;(2)長軸長是短軸長的3倍,且經過點20.(12分)在一個盒子中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4,先從盒子中隨機取出一個球,該球的編號記為,將球放回盒子中,然后再從盒子中隨機取出一個球,該球的編號記為.(1)寫出試驗的樣本空間;(2)求“”的概率.21.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)若在上恒成立,求取值范圍.22.(10分)已知直三棱柱中,,,E、F分別是、的中點,D為棱上的點.(1)證明:;(2)當時,求直線BF與平面DEF所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出點關于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結果.【詳解】點關于坐標原點的對稱點是故選:A2、B【解析】設.由,得,故函數(shù)在上單調遞減.由為奇函數(shù),所以.不等式等價于,即,結合函數(shù)的單調性可得,從而不等式的解集為,故答案為B.考點:利用導數(shù)研究函數(shù)的單調性.【方法點晴】本題考查了導數(shù)的綜合應用及函數(shù)的性質的應用,構造函數(shù)的思想,閱讀分析問題的能力,屬于中檔題.常見的構造思想是使含有導數(shù)的不等式一邊變?yōu)?,即得,當是形如時構造;當是時構造,在本題中令,(),從而求導,從而可判斷單調遞減,從而可得到不等式的解集3、A【解析】由直線點斜式計算出直線方程.【詳解】因為直線過點,且斜率為2,所以該直線方程為,即.故選【點睛】本題考查了求直線方程,由題意已知點坐標和斜率,故選用點斜式即可求出答案,較為簡單.4、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A5、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C6、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯誤,D正確.故選:D7、C【解析】由題設寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設的方程為,所以,即設AB的中點為,則由.所以,即圓的半徑為2故選:C8、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應用,意在考查學生合情推理的意識和數(shù)學建模能力9、A【解析】因為,那么結合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應用,屬于中等題.10、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.11、B【解析】利用誘導公式、兩角和的正弦公式化簡已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B12、B【解析】直接利用不等式的基本性質判斷.【詳解】①因為,則,根據(jù)不等式性質得,故正確;②當時,,而,故錯誤;③因為,所以,即,故正確;④當時,,故錯誤;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用在拋物線上可求得,結合等比數(shù)列的公比可求得,利用拋物線的焦半徑公式即可求得結果.【詳解】在拋物線上,,解得:,拋物線;數(shù)列為等比數(shù)列,又,,公比,,即,解得:,即的橫坐標為.故答案為:.14、##【解析】設,中點,根據(jù)中點坐標公式求出,代入圓的標準方程即可得出結果.【詳解】設,中點,則,即,因為在圓上,代入得故答案為:.15、(答案不唯一)【解析】根據(jù)橢圓的標準方程,以及分析即可【詳解】由題可知橢圓的形式應為(,且),可取故答案為:(答案不唯一)16、【解析】設出點和三角形的重心,利用重心坐標公式得到點和三角形的重心坐標的關系,,代入橢圓方程即可求得軌跡方程,再利用,,三點不共線得到.【詳解】設,,由,得,即,,因為為的重心,所以,,即,,代入,得,即,因為,,三點不共線,所以,則的重心的軌跡方程是.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,(2)第三組應抽人,第四組應抽人,第五組應抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學生第三組應抽3人,第四組應抽2人,第五組應抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應抽人,第四組應抽人,第五組應抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結論;(2)利用空間向量結合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設,其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設知,,,是平面內的兩個不共線向量設是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設,而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.19、(1);(2)或.【解析】(1)由已知可得,,且焦點在軸上,進而可得橢圓的標準方程;(2)由已知可得,,此時焦點在軸上,或,,此時焦點在軸上,進而可得橢圓的標準方程;【小問1詳解】解:橢圓經過點,,,,,且焦點在軸上,橢圓的標準方程為.【小問2詳解】解:長軸長是短軸長的3倍,且經過點,當點在長軸上時,,,此時焦點在軸上,此時橢圓的標準方程為;當點在短軸上時,,,此時焦點在軸上,此時橢圓的標準方程.綜合得橢圓的方程為或.20、(1)見解析(2)【解析】(1)利用列舉法列出試驗的樣本空間,(2)由(1)可知共有16種情況,其中和為5的有4種,然后利用古典概型的概率公式求解即可【小問1詳解】由題意可知試驗的樣本空間為:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)【小問2詳解】由(1)可知共有16種等可能情況,其中滿足的有:(1,4),(2,3),(3,2),(4,1),4種,所以“”的概率為21、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結果;(2)二次函數(shù)的恒成立問題需要對二次項系數(shù)是否為0進行分類討論,即可求出結果.【詳解】(1)當時,,即,解得或,所以,解集為或.(2)因為在上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論