版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆四川雅安中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是首項為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實數(shù)的取值范圍是()A., B.C., D.2.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.3.已知直線:恒過點,過點作直線與圓:相交于A,B兩點,則的最小值為()A. B.2C.4 D.4.如圖,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓的上半部分于點,F(xiàn)是橢圓C的右焦點,則()A.20 B.C.36 D.305.已知拋物線過點,點為平面直角坐標系平面內一點,若線段的垂直平分線過拋物線的焦點,則點與原點間的距離的最小值為()A. B.C. D.6.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.7.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.8.直線且的傾斜角為()A. B.C. D.9.已知是橢圓兩個焦點,P在橢圓上,,且當時,的面積最大,則橢圓的標準方程為()A. B.C. D.10.曲線在點處的切線方程是A. B.C. D.11.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m12.直線分別交坐標軸于A,B兩點,O為坐標原點,三角形OAB的內切圓上有動點P,則的最小值為()A.16 B.18C.20 D.22二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的公差為1,且是和的等比中項,則前10項的和為___________.14.已知圓M過,,且圓心M在直線上.(1)求圓M的標準方程;(2)過點的直線m截圓M所得弦長為,求直線m的方程;15.已知橢圓的左、右焦點分別為,,P為橢圓上一點,滿足(O為坐標原點).若,則橢圓的離心率為______16.已知點P是拋物線上的一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的兩焦點為、,P為橢圓上一點,且(1)求此橢圓的方程;(2)若點P在第二象限,,求的面積18.(12分)三棱錐中,,,,直線與平面所成的角為,點在線段上.(1)求證:;(2)若點在上,滿足,點滿足,求實數(shù)使得二面角的余弦值為.19.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨立的,成活率為p,設為成活棕櫚樹的株數(shù),數(shù)學期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補種,求需要補種棕櫚樹的概率.20.(12分)已知點,直線:,直線m過點N且與垂直,直線m交圓于兩點A,B.(1)求直線m的方程;(2)求弦AB的長.21.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和22.(10分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由等差數(shù)列通項公式得,再結合題意得數(shù)列單調遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調遞增,且滿足,,所以,解得故選:2、C【解析】當時,,故可以得到,因為,進而得到,所以是等比數(shù)列,進而求出【詳解】由,得,得,又數(shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.3、A【解析】根據(jù)將最小值問題轉化為d取得最大值問題,然后結合圖形可解.【詳解】將,變形為,故直線恒過點,圓心,半徑,已知點P在圓內,過點作直線與圓相交于A,兩點,記圓心到直線的距離為d,則,所以當d取得最大值時,有最小值,結合圖形易知,當直線與線段垂直的時候,d取得最大值,即取得最小值,此時,所以.故選:A.4、D【解析】由橢圓的對稱性可知,,代入計算可得答案.【詳解】設橢圓左焦點為,連接由橢圓的對稱性可知,,所以.故選:D.5、B【解析】將點的坐標代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標,分析可知點的軌跡是以點為圓心,半徑為的圓,利用圓的幾何性質可求得點與原點間的距離的最小值.【詳解】將點的坐標代入拋物線的方程得,可得,故拋物線的方程為,易知點,由中垂線的性質可得,則點的軌跡是以點為圓心,半徑為的圓,故點的軌跡方程為,如下圖所示:由圖可知,當點、、三點共線且在線段上時,取最小值,且.故選:B.6、D【解析】根據(jù)圓的切線性質,結合圓的標準方程、圓與圓的位置關系進行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設,點,因此的中點的橫坐標為:,縱坐標為:,,因此以為直徑的圓的標準方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關鍵點睛:由圓的切線性質得到點、在以為直徑的圓上,運用圓與圓的位置關系進行求解是解題的關鍵.7、C【解析】設等比數(shù)列的公比為,可得出,即可得解.【詳解】設等比數(shù)列的公比為,可得出.故選:C.8、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關系可得結果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.9、A【解析】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,即可解出【詳解】由題意知c=3,當△F1PF2的面積最大時,點P與橢圓在y軸上的頂點重合,∵時,△F1PF2的面積最大,∴a==,b=∴橢圓的標準方程為故選:A10、D【解析】先求導數(shù),得切線的斜率,再根據(jù)點斜式得切線方程.【詳解】,選D.點睛】本題考查導數(shù)幾何意義以及直線點斜式方程,考查基本求解能力,屬基礎題.11、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據(jù)是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.12、B【解析】由題意,求出內切圓的半徑和圓心坐標,設,則,由表示內切圓上的動點P到定點的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標軸于A,B兩點,所以設,則,因為,所以三角形OAB的內切圓半徑,內切圓圓心為,所以內切圓的方程為,設,則,因為表示內切圓上的動點P到定點的距離的平方,且在內切圓內,所以,所以,,即的最小值為18,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等比中項及等差數(shù)列通項公式求出首項,再利用等差數(shù)列的前項和公式求出前10項的和.【詳解】設等差數(shù)列的首項為,由已知條件得,即,,解得,則.故答案為:.14、(1)(2)或【解析】(1)首先由條件設圓的標準方程,再將圓上兩點代入,即可求得圓的標準方程;(2)分斜率不存在和存在兩種情況,分別根據(jù)弦長公式,求得直線方程.【小問1詳解】圓心在直線上,設圓的標準方程為:,圓過點,,,解得圓的標準方程為【小問2詳解】①當斜率不存在時,直線m的方程為:,直線m截圓M所得弦長為,符合題意②當斜率存在時,設直線m:,圓心M到直線m的距離為根據(jù)垂徑定理可得,,,解得直線m方程為或.15、##【解析】由可得,再結合橢圓的性質可得為直角三角形,由題意設,則,由勾股定理可得,再結合橢圓的定義可求出離心率【詳解】因為,所以,所以,因為,所以,所以為直角三角形,即,所以設,則,所以,得,因為則,所以,所以,即離心率為,故答案為:16、【解析】由拋物線的定義得:,所以,當三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當三點共線時,最小,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題可得,根據(jù)橢圓的定義,求得,進而求得的值,即可求解;(2)由題可得直線方程為,聯(lián)立橢圓方程可得點P,利用三角形的面積公式,即求.【小問1詳解】設橢圓的標準方程為,焦距為,由題可得,,所以,可得,即,則,所以橢圓的標準方程為【小問2詳解】設點坐標為,,,∵,∴所在的直線方程為,則解方程組,可得,∴.18、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質可證得結論成立;(2)設,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可得出關于實數(shù)的等式,即可解得實數(shù)的值.【小問1詳解】證明:因為,,則且,,平面,所以為直線與平面所成的線面角,即,,故,,,平面,平面,因此,.【小問2詳解】解:設,由(1)可知且,,因為平面,,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、,設平面的法向量為,,,則,取,可得,設平面的法向量為,,,由,取,則,由已知可得,解得.當點為線段的中點時,二面角的平面角為銳角,合乎題意.綜上所述,.19、(1),分布列見解析;(2).【解析】(1)根據(jù)二項分布知識即可求解;(2)將補種棕櫚樹的概率轉化為成活的概率,結合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補種棕櫚樹”為事件A,由(1)得,,所以需要補種棕櫚樹的概率為.20、(1)(2)【解析】(1)求出斜率,用點斜式求直線方程;(2)利用垂徑定理求弦長.【小問1詳解】因為直線:,所以直線的斜率為.因為直線m過點N且與垂直,所以直線的斜率為,又過點,所以直線:,即【小問2詳解】直線與圓相交,則圓心到直線的距離為:,圓的半徑為,所以弦長21、(1)60(2)①1024;②1【解析】(1)根據(jù)二項式定理求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2026學年魯教版初中信息科技八年級上學期期末模擬試題(原卷版)
- 某著名企業(yè)人力資源管理診斷及分析改進建議報告
- 電機與電氣控制技術 課件 項目2 交流電機的應用與維護
- 《GB 4706.29-2008家用和類似用途電器的安全 便攜式電磁灶的特殊要求》專題研究報告
- 《GBT 5009.219-2008糧谷中矮壯素殘留量的測定》專題研究報告
- 道路安全培訓總評內容課件
- 2026年魯教版二年級英語上冊期末真題試卷含答案
- 2026年河北邯鄲市高職單招職業(yè)技能測試試題附答案
- 2026年度第三季度醫(yī)保知識培訓考試題及參考答案(考試直接用)
- 道安培訓教學課件
- 2025年全國注冊監(jiān)理工程師繼續(xù)教育題庫附答案
- 波形護欄工程施工組織設計方案
- 自建房消防安全及案例培訓課件
- 2025年廣東省第一次普通高中學業(yè)水平合格性考試(春季高考)思想政治試題(含答案詳解)
- 2025云南楚雄州永仁縣人民法院招聘聘用制司法輔警1人參考筆試試題及答案解析
- 2024年和田地區(qū)遴選公務員筆試真題匯編附答案解析
- 股份掛靠協(xié)議書范本
- 動力電池熱管理系統(tǒng)設計指南-2025
- 小兒蜂窩組織炎基礎護理要點
- 無人機培訓課件
- 2025年內蒙古能源集團招聘(計算機類)復習題及答案
評論
0/150
提交評論