2026屆山東省濟(jì)南市名校高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁(yè)
2026屆山東省濟(jì)南市名校高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁(yè)
2026屆山東省濟(jì)南市名校高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁(yè)
2026屆山東省濟(jì)南市名校高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁(yè)
2026屆山東省濟(jì)南市名校高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆山東省濟(jì)南市名校高二上數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題2.已知a、b是兩條不同的直線,α、β、γ是三個(gè)不同的平面,則下列命題正確的是()A.若a∥α,a∥b,則b∥α B.若a∥α,a∥β,則α∥βC.若α⊥γ,β⊥γ,則α∥β D.若a⊥α,b⊥α,則a∥b3.在空間四邊形OABC中,,,,點(diǎn)M在線段OA上,且,N為BC中點(diǎn),則等于()A. B.C. D.4.函數(shù)的圖象大致為()A B.C D.5.函數(shù)在點(diǎn)處的切線方程的斜率是()A. B.C. D.6.在等差數(shù)列中,已知,則數(shù)列的前6項(xiàng)之和為()A.12 B.32C.36 D.727.在等差數(shù)列中,若,則()A.5 B.6C.7 D.88.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.9.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.10.已知兩個(gè)向量,,且,則的值為()A.-2 B.2C.10 D.-1011.過點(diǎn)且垂直于直線的直線方程是()A. B.C. D.12.若拋物線y2=4x上一點(diǎn)P到x軸的距離為2,則點(diǎn)P到拋物線的焦點(diǎn)F的距離為()A.4 B.5C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)(1)求的最小正周期和的最大值;(2)已知銳角的內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c,若,且,求的面積.14.日常生活中的飲用水通常是經(jīng)過凈化的.隨著水的純凈度的提高,所需凈化費(fèi)用不斷増加.已知將噸水凈化到純凈度為時(shí)所需費(fèi)用(單位:元)為.則凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的___________倍,這說明,水的純凈度越高,凈化費(fèi)用增加的速度越___________(填“快”或“慢”).15.已知點(diǎn),圓:.若過點(diǎn)的圓的切線只有一條,求這條切線方程____________.16.歷史上第一個(gè)研究圓錐曲線的是梅納庫(kù)莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì),比如:從拋物線的焦點(diǎn)發(fā)出的光線或聲波在經(jīng)過拋物線反射后,反射光線平行于拋物線的對(duì)稱軸:反之,平行于拋物線對(duì)稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過拋物線的焦點(diǎn).已知拋物線,經(jīng)過點(diǎn)一束平行于C對(duì)稱軸的光線,經(jīng)C上點(diǎn)P反射后交C于點(diǎn)Q,則PQ的長(zhǎng)度為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(diǎn)(1)求橢圓C的方程;(2)已知直線與橢圓C交于不同的兩點(diǎn)M,N,與直線交于點(diǎn)Q(P,Q,M,N均不重合),記的斜率分別為,若.證明:為定值18.(12分)已知直線和直線(1)若時(shí),求a的值;(2)當(dāng)平行,求兩直線,的距離19.(12分)已知a>0,b>0,a+b=1,求證:.20.(12分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長(zhǎng)時(shí),求m的值;(2)當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),求m的值.21.(12分)如圖,正四棱錐底面的四個(gè)頂點(diǎn)在球的同一個(gè)大圓上,點(diǎn)在球面上,且正四棱錐的體積為.(1)該正四棱錐的表面積的大小;(2)二面角的大小.(結(jié)果用反三角表示)22.(10分)如圖,在四棱錐中,底面為的中點(diǎn)(1)求證:平面;(2)若,求平面與平面的夾角大小

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)復(fù)合命題的真假表即可得出結(jié)果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個(gè)真命題,所以為真命題,即為假命題,為真命題.故選:A2、D【解析】根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對(duì)四個(gè)選項(xiàng)逐一分析排除,由此得出正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),直線有可能平面內(nèi),故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),兩個(gè)平面有可能相交,平行于它們的交線,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),可能相交,故C選項(xiàng)錯(cuò)誤.根據(jù)線面垂直的性質(zhì)定理可知D選項(xiàng)正確.故選:D.3、B【解析】由題意結(jié)合圖形,直接利用,求出,然后即可解答.【詳解】解:因?yàn)榭臻g四邊形OABC如圖,,,,點(diǎn)M在線段OA上,且,N為BC的中點(diǎn),所以.所以.故選:B.4、A【解析】利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合函數(shù)值確定正確選項(xiàng).【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當(dāng)時(shí),,可得選項(xiàng)為A故選:A5、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D6、C【解析】利用等差數(shù)列的求和公式結(jié)合角標(biāo)和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項(xiàng)之和為:故選:C.7、B【解析】由得出.【詳解】由可得,故選:B8、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.9、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因?yàn)?,所以,解得故選:C10、C【解析】根據(jù)向量共線可得滿足的關(guān)系,從而可求它們的值,據(jù)此可得正確的選項(xiàng).【詳解】因?yàn)?,故存在常?shù),使得,所以,故,所以,故選:C.11、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點(diǎn)代入求解.【詳解】因?yàn)樗笾本€垂直于直線,所以設(shè)其方程為,又因?yàn)橹本€過點(diǎn),所以,解得所以直線方程為:,故選:A.12、A【解析】根據(jù)拋物線y2=4x上一點(diǎn)P到x軸的距離為2,得到點(diǎn)P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準(zhǔn)線方程為x=-1,∵拋物線y2=4x上一點(diǎn)P到x軸的距離為2,則P(3,±2),∴點(diǎn)P到拋物線的準(zhǔn)線的距離為3+1=4,∴點(diǎn)P到拋物線的焦點(diǎn)F的距離為4.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(1)的最小正周期為,的最大值為1(2)【解析】(1)直接根據(jù)的表達(dá)式和正弦函數(shù)的性質(zhì)可得到的最小正周期和最大值;(2)先根據(jù)求得角的大小為,然后在中利用余弦定理求得,最后根據(jù)三角形的面積公式即可【小問1詳解】已知?jiǎng)t的最小正周期為:則的最大值為:【小問2詳解】由可得:()或()又為銳角,則可得:.在中,由余弦定理可得:,即又,解得:則的面積為:14、①.②.快【解析】根據(jù)導(dǎo)數(shù)的概念可知凈化所需費(fèi)用的瞬時(shí)變化率即為函數(shù)的一階導(dǎo)數(shù),即先對(duì)函數(shù)求導(dǎo),然后將和代入進(jìn)行計(jì)算,再求,即可得到結(jié)果,進(jìn)而能夠判斷水的純凈度越高,凈化費(fèi)用增加的速度的快慢【詳解】由題意,可知凈化所需費(fèi)用的瞬時(shí)變化率為,所以,,所以,所以凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的倍;因?yàn)椋芍募儍舳仍礁?,凈化費(fèi)用增加的速度越快.故答案為:,快.15、或【解析】由題設(shè)知A在圓上,代入圓的方程求出參數(shù)a,結(jié)合切線的性質(zhì)及點(diǎn)斜式求切線方程.【詳解】因?yàn)檫^的圓的切線只有一條,則在圓上,所以,則,且切線斜率,即,所以切線方程或,整理得或.故答案為:或.16、####【解析】根據(jù)題意,求得點(diǎn)以及拋物線焦點(diǎn)的坐標(biāo),即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點(diǎn)的坐標(biāo),即可求得.【詳解】因?yàn)榻?jīng)過點(diǎn)一束平行于C對(duì)稱軸的光線交拋物線于點(diǎn),故對(duì),令,則可得,也即的坐標(biāo)為,又拋物線的焦點(diǎn)的坐標(biāo)為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標(biāo)為,則.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過的點(diǎn)建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結(jié)合可得,再逐個(gè)求解,,然后可證結(jié)論.【小問1詳解】解:由題意,解得故橢圓C的方程為.【小問2詳解】證明:設(shè)直線的方程為,聯(lián)立得,因?yàn)橹本€與橢圓C相切,所以判別式,即,整理得,所以,故直線的方程為,因?yàn)椋?,設(shè)直線的方程為,聯(lián)立方程組解得故點(diǎn)Q坐標(biāo)為,聯(lián)立方程組,化簡(jiǎn)得設(shè)點(diǎn)因?yàn)榕袆e式,得又,所以故,于是為定值.【點(diǎn)睛】直線與橢圓的相切問題一般是聯(lián)立方程,結(jié)合判別式為零求解;定值問題的求解一般結(jié)合目標(biāo)式中的項(xiàng),逐個(gè)求解,代入驗(yàn)證即可.18、(1)(2)【解析】(1)由垂直可得兩直線系數(shù)關(guān)系,即可得關(guān)于實(shí)數(shù)a的方程.(2)由平行可得兩直線系數(shù)關(guān)系,即可得關(guān)于實(shí)數(shù)a的方程,進(jìn)而可求出兩直線的方程,結(jié)合直線的距離公式即可求出直線與之間的距離.【小問1詳解】∵,且,∴,解得【小問2詳解】∵,,且,∴且,解得,∴,即∴直線間的距離為19、見解析【解析】將代入式子,得到,,進(jìn)而進(jìn)行化簡(jiǎn),最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當(dāng)且僅當(dāng),即時(shí)取“=”20、(1);(2)1.【解析】(1)將圓C的圓心坐標(biāo)代入直線l的方程計(jì)算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點(diǎn)到直線距離公式計(jì)算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長(zhǎng),則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長(zhǎng)為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.21、(1)(2)【解析】(1)首先求出球的半徑,即可得到四棱錐的棱長(zhǎng),再根據(jù)錐體的表面積公式計(jì)算可得;(2)取中點(diǎn),聯(lián)結(jié),即可得到,從而得到為二面角的平面角,再利用余弦定理計(jì)算可得.【小問1詳解】解:設(shè)球的半徑為,則解得,所以所有棱長(zhǎng)均為,因此【小問2詳解】解:取中點(diǎn),聯(lián)結(jié),因?yàn)榫鶠檎切危虼?,即為二?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論