陜西省西北工業(yè)大學(xué)附中2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
陜西省西北工業(yè)大學(xué)附中2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
陜西省西北工業(yè)大學(xué)附中2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
陜西省西北工業(yè)大學(xué)附中2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
陜西省西北工業(yè)大學(xué)附中2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省西北工業(yè)大學(xué)附中2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一物體做直線運(yùn)動,其位移(單位:)與時間(單位:)的關(guān)系是,則該物體在時的瞬時速度是A. B.C. D.2.已知正的邊長為,那么的平面直觀圖的面積為()A. B.C. D.3.已知函數(shù),要使函數(shù)有三個零點(diǎn),則的取值范圍是()A. B.C. D.4.2013年9月7日,總書記在哈薩克斯坦納扎爾巴耶夫大學(xué)發(fā)表演講在談到環(huán)境保護(hù)問題時提出“綠水青山就是金山銀山”這一科學(xué)論新.某市為了改善當(dāng)?shù)厣鷳B(tài)環(huán)境,2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,從2021年開始每年投入資金比上一年增加10%,到2024年底該市生態(tài)環(huán)境建設(shè)投資總額大約為()(其中,,)A.2559萬元 B.2969萬元C.3005萬元 D.3040萬元5.積分()A. B.C. D.6.已知數(shù)列為等差數(shù)列,且成等比數(shù)列,則的前6項(xiàng)的和為A.15 B.C.6 D.37.已知圓:,是直線的一點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,,則的最小值為()A. B.C. D.8.拋物線型太陽灶是利用太陽能輻射的一種裝置.當(dāng)旋轉(zhuǎn)拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點(diǎn)處通過,形成太陽光線的高密集區(qū),拋物面的焦點(diǎn)在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點(diǎn)到灶底(拋物線的頂點(diǎn))的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m9.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題10.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切11.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點(diǎn),BE,DH的交點(diǎn)為G,則的化簡結(jié)果為()A. B.C. D.12.已知雙曲線:的左、右焦點(diǎn)分別為,,過點(diǎn)且斜率為的直線與雙曲線在第二象限的交點(diǎn)為,若,則雙曲線的離心率是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點(diǎn),其中為左焦點(diǎn),P是與在第一象限的公共點(diǎn).線段的垂直平分線經(jīng)過坐標(biāo)原點(diǎn),則的最小值為_____________.14.已知函數(shù),,當(dāng)時,不等式恒成立,則實(shí)數(shù)a的取值范圍為_______15.若不同的平面的一個法向量分別為,,則與的位置關(guān)系為___________.16.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心為,且圓C經(jīng)過點(diǎn)(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實(shí)數(shù)m的取值范圍18.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若在上有解,求實(shí)數(shù)a的取值范圍.19.(12分)已知圓C經(jīng)過、兩點(diǎn),且圓心在直線上(1)求圓C的方程;(2)若直線經(jīng)過點(diǎn)且與圓C相切,求直線的方程20.(12分)已知圓C經(jīng)過,,三點(diǎn),并且與y軸交于P,Q兩點(diǎn),求線段PQ的長度.21.(12分)已知函數(shù),.(1)若,求曲線在點(diǎn)處的切線方程;(2)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍.22.(10分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先對求導(dǎo),然后將代入導(dǎo)數(shù)式,可得出該物體在時的瞬時速度【詳解】對求導(dǎo),得,,因此,該物體在時的瞬時速度為,故選A【點(diǎn)睛】本題考查瞬時速度的概念,考查導(dǎo)數(shù)與瞬時變化率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題2、D【解析】作出正的實(shí)際圖形和直觀圖,計(jì)算出直觀圖的底邊上的高,由此可求得的面積.【詳解】如圖①②所示的實(shí)際圖形和直觀圖.由斜二測畫法可知,,,在圖②中作于,則.所以.故選:D.【點(diǎn)睛】本題考查直觀圖面積的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】要使函數(shù)有三個解,則與圖象有三個交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】要使函數(shù)有三個解,則與圖象有三個交點(diǎn),因?yàn)楫?dāng)時,,所以,可得在上遞減,在遞增,所以,有最小值,且時,,當(dāng)趨向于負(fù)無窮時,趨向于0,但始終小于0,當(dāng)時,單調(diào)遞減,由圖像可知:所以要使函數(shù)有三個零點(diǎn),則.故選:A4、B【解析】前7年投入資金可看成首項(xiàng)為160,公差為20的等差數(shù)列,后4年投入資金可看成首項(xiàng)為260,公比為1.1的等比數(shù)列,分別求和,即可求出所求【詳解】2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,成等差數(shù)列,則2020年投入資金萬元,年共7年投資總額為,從2021年開始每年投入資金比上一年增加,則從2021年到2024年投入資金成首項(xiàng)為,公比為1.1,項(xiàng)數(shù)為4的等比數(shù)列,故從2021年到2024年投入總資金為,故到2024年底該市生態(tài)環(huán)境建設(shè)投資總額大約為萬元故選:5、B【解析】根據(jù)定積分的幾何意義求值即可.【詳解】由題設(shè),定積分表示圓在x軸的上半部分,所以.故選:B6、C【解析】利用成等比數(shù)列,得到方程2a1+5d=2,將其整體代入{an}前6項(xiàng)的和公式中即可求出結(jié)果【詳解】∵數(shù)列為等差數(shù)列,且成等比數(shù)列,∴,1,成等差數(shù)列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6項(xiàng)的和為2a1+5d)=故選C【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用7、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A8、C【解析】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為,根據(jù)是拋物線的焦點(diǎn),求得拋物線的方程,進(jìn)而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,O與C重合,設(shè)拋物線的方程為,由題意可得是拋物線的焦點(diǎn),即,可得,所以拋物線的方程為,當(dāng)時,,所以.故選:C.9、D【解析】因?yàn)槭钦婷},是假命題,所以是假命題,選項(xiàng)A錯誤,是真命題,選項(xiàng)B錯誤,是假命題,選項(xiàng)C錯誤,是真命題,選項(xiàng)D正確,故選D.考點(diǎn):真值表的應(yīng)用.10、A【解析】由直線恒過定點(diǎn),且定點(diǎn)圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因?yàn)橹本€恒過定點(diǎn),而,所以定點(diǎn)在圓內(nèi),所以直線與圓相交,故選:A.11、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運(yùn)算法則即可求出結(jié)果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點(diǎn),,,故選:D12、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因?yàn)?,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##4.5【解析】設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,即,故,當(dāng)且僅當(dāng)時取等,所以,故答案為:.14、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計(jì)算函數(shù)最小值得到答案.【詳解】當(dāng)時,不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當(dāng)時,,當(dāng)時,,所以,所以故答案為:15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行16、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點(diǎn),最后分類討論即可.【詳解】設(shè),則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;若,則;若,則或,解得或或;則的解集為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)圓C的一般方程為.由圓C的圓心和圓C經(jīng)過點(diǎn)求解;(2)根據(jù)圓與圓C恰有兩條公切線,由圓O與圓C相交求解.【小問1詳解】解:設(shè)圓C的一般方程為∵圓C的圓心,∴即又圓C經(jīng)過點(diǎn),∴解得經(jīng)檢驗(yàn)得圓C的一般方程為;【小問2詳解】由(1)知圓C的圓心為,半徑為5∵圓與圓C恰有兩條公切線,∴圓O與圓C相交∴∵,∴∴m的取值范圍是18、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當(dāng)時,不等式變形為在,上有解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解的最小值,即可得到答案【小問1詳解】當(dāng)時,,所以當(dāng)時;當(dāng)時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時函數(shù)有極小值,無極大值.【小問2詳解】因?yàn)樵谏嫌薪猓栽谏嫌薪?,?dāng)時,不等式成立,此時,當(dāng)時在上有解,令,則由(1)知時,即,當(dāng)時;當(dāng)時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當(dāng)時,,所以,綜上可知,實(shí)數(shù)a的取值范圍是.點(diǎn)睛】利用導(dǎo)數(shù)研究不等式恒成立問題或有解問題的策略為:通常構(gòu)造新函數(shù)或參變量分離,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值從而求得參數(shù)的取值范圍19、(1);(2)【解析】(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標(biāo),再用兩點(diǎn)間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線斜率不存在時,與圓相切,方程為;當(dāng)直線斜率存在時,設(shè)斜率為,寫出其點(diǎn)斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.試題解析:(1)依題意知線段的中點(diǎn)坐標(biāo)是,直線的斜率為,故線段的中垂線方程是即,解方程組得,即圓心的坐標(biāo)為,圓的半徑,故圓的方程是(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設(shè)直線方程是,即,因?yàn)橹本€與圓相切,所以有,解得或所以直線的方程是或.20、【解析】設(shè)圓的方程為,代入點(diǎn)的坐標(biāo),求出,,,令,即可得出結(jié)論【詳解】解:設(shè)圓的方程為,則,,,,,即,令,可得,解得、,所以、,或、,,21、(1).(2).【解析】分析:(1)由和可由點(diǎn)斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)的性質(zhì)可得解.詳解:(1)當(dāng)時,所以,所以曲線在點(diǎn)處的切線方程為.(2)因?yàn)楹瘮?shù)在上是減函數(shù),所以在上恒成立.做法一:令,有,得故.實(shí)數(shù)的取值范圍為做法二:即在上恒成立,則在上恒成立,令,顯然在上單調(diào)遞減,則,得實(shí)數(shù)的取值范圍為點(diǎn)睛:導(dǎo)數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論