2026屆遼寧省沈陽市第1高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2026屆遼寧省沈陽市第1高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2026屆遼寧省沈陽市第1高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2026屆遼寧省沈陽市第1高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2026屆遼寧省沈陽市第1高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆遼寧省沈陽市第1高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果向量,,共面,則實數(shù)的值是()A. B.C. D.2.已知函數(shù)的圖象在點處的切線與直線垂直,則()A. B.C. D.3.雙曲線的光學性質為:如圖①,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.4.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.5.已知直線過點,且與直線垂直,則直線的方程是()A. B.C. D.6.設m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則7.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內一定點,M是圓周上一動點,把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設CD與OM交于點P,則點P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓8.設,,,則,,大小關系是A. B.C. D.9.設,是橢圓C:的左、右焦點,若橢圓C上存在一點P,使得,則橢圓C的離心率e的取值范圍為()A. B.C. D.10.某次射擊比賽中,某選手射擊一次擊中10環(huán)的概率是,連續(xù)兩次均擊中10環(huán)的概率是,已知某次擊中10環(huán),則隨后一次擊中10環(huán)的概率是A. B.C. D.11.設,則A.2 B.3C.4 D.512.已知等差數(shù)列的前項和為,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線,則切線的方程為________14.已知正三角形邊長為a,則該三角形內任一點到三邊的距離之和為定值.類比上述結論,在棱長為a的正四面體內,任一點到其四個面的距離之和為定值_____.15.在長方體中,設,,則異面直線與所成角的大小為______16.命題“”的否定為_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為矩形,側面PAD是正三角形,平面平面ABCD,M是PD的中點(1)證明:平面PCD;(2)若PB與底面ABCD所成角的正切值為,求二面角的正弦值18.(12分)已知雙曲線的左,右焦點為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點,若,求k的值.19.(12分)如圖,已知四邊形中,,,,且,求四邊形的面積20.(12分)已知直線經(jīng)過拋物線的焦點,且與拋物線相交于兩點.(1)若直線的斜率為1,求;(2)若,求直線的方程.21.(12分)已知數(shù)列的前n項積,數(shù)列為等差數(shù)列,且,(1)求與的通項公式;(2)若,求數(shù)列的前n項和22.(10分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設,由空間向量的坐標運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設,可得,解得.故選:B.2、C【解析】對函數(shù)求導,利用導數(shù)的幾何意義結合垂直關系計算作答.【詳解】函數(shù)定義域為,求導得,于是得函數(shù)的圖象在點處切線的斜率,而直線的斜率為,依題意,,即,解得,所以.故選:C3、C【解析】連接,已知條件為,,設,由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應用勾股定理得出的關系,求得離心率【詳解】易知共線,共線,如圖,設,,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C4、D【解析】根據(jù)橢圓的一個焦點是圓的圓心,求得c,再根據(jù)橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D5、D【解析】由題意設直線方程為,然后將點坐標代入求出,從而可求出直線方程【詳解】因為直線與直線垂直,所以設直線方程為,因為直線過點,所以,得,所以直線方程為,故選:D6、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內一直線l,所以,因為l為內一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內一直線l,所以,因為l為內一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關系判斷,意在考查學生對這些知識的理解掌握水平.7、D【解析】根據(jù)題意知,所以,故點P的軌跡是橢圓.【詳解】由題意知,關于CD對稱,所以,故,可知點P的軌跡是橢圓.【點睛】本題主要考查了橢圓的定義,屬于中檔題.8、A【解析】構造函數(shù),根據(jù)的單調性可得(3),從而得到,,的大小關系【詳解】考查函數(shù),則,在上單調遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調性比較大小,考查了構造法和轉化思想,屬基礎題9、B【解析】先設,根據(jù)P在橢圓上得到,由,得到的范圍,即為離心率的范圍.【詳解】由橢圓的方程可得,,設,由,則,即,由P在橢圓上可得,所以,代入可得所以,因為,所以整理可得:,消去得:所以,即所以.故選:B10、B【解析】根據(jù)條件概率的計算公式,得所求概率為,故選B.11、B【解析】利用復數(shù)的除法運算求出,進而可得到.【詳解】,則,故,選B.【點睛】本題考查了復數(shù)的四則運算,考查了復數(shù)的模,屬于基礎題12、C【解析】利用已知條件求得,由此求得.【詳解】依題意,解得,所以.故選:C【點睛】本小題主要考查等差數(shù)列的通項公式和前項和公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知可得點M在圓C上,則過M作圓的切線與CM所在的直線垂直,求出斜率,進而可得直線方程.【詳解】由圓得到圓心C的坐標為(0,

0),圓的半徑,而所以點M在圓C上,則過M作圓的切線與CM所在的直線垂直,又,得到CM所在直線的斜率為,所以切線的斜率為,則切線方程為:即故答案為:.14、【解析】利用正四面體內任一點可將正四面體分成四個小四面體,令它們的高分別為,由體積相等即可求得;【詳解】正三角形邊長為a,則該三角形內任一點到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內,任一點到其四個面的距離分別為,即有:,解得故答案為:【點睛】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;15、##【解析】建立空間直角坐標系,用向量法即可求出異面直線與所成的角.【詳解】以為原點,所在直線分別為軸,軸,軸,建立空間直角坐標系,則,所以,因為,所以,即,所以異面直線與所成的角為.故答案為:90°.16、【解析】根據(jù)特稱命題的否定是全稱命題,可得結果.【詳解】由特稱命題否定是全稱命題,故條件不變,否定結論所以“”的否定為“”故答案為:【點睛】本題主要考查特稱命題的否定是全稱命題,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)依題意可得,再根據(jù)面面垂直的性質得到平面,即可得到,即可得證;(2)取的中點為,連接,根據(jù)面面垂直的性質得到平面,連接,即可得到為與底面所成角,令,,利用銳角三角函數(shù)的定義求出,建立如圖所示空間直角坐標系,利用空間向量法求出二面角的余弦值,即可得解;【小問1詳解】解:證明:在正中,為的中點,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小問2詳解】解:如圖,取的中點為,連接,在正中,,平面平面,平面平面,∴平面,連接,則為與底面所成角,即.不妨取,,,,∴以為原點建立如圖所示的空間直角坐標系,則有,,,,,,∴,設面的一個法向量為,則由令,則,又因為面,取作為面的一個法向量,設二面角為,∴,∴,因此二面角的正弦值為18、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設,則的中點為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達定理可得答案.【小問1詳解】設,則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設,則的中點為,,由,可知,所以,即,因為的方程為,雙曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因為,所以,即.19、.【解析】在中由余弦定理可得,在中,由余弦定理可得,再利用四邊形的面積,結合三角形面積公式可得答案.【詳解】在中,由,,,可得在中,由,,,可得又,故.所以四邊形的面積=【點睛】本題主要考查余弦定理解三角形,考查了三角形面積公式的應用,屬于中檔題.20、(1)8(2)【解析】(1)設,由,進而結合拋物線的定義,將點到焦點的距離轉化為到準線的距離,最后求得答案;(2)由,所以,設出直線方程并代入拋物線方程,進而結合根與系數(shù)的關系求得答案.【小問1詳解】設,拋物線的準線方程為:,因為,由拋物線定義可知,.直線,代入拋物線方程化簡得:,則,所以.【小問2詳解】設,代入拋物線方程化簡得:,所以,因為,所以,于是則直線的方程為:.21、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數(shù)列的前n項積,所以,所以,兩式相除得,因為數(shù)列為等差數(shù)列,且,,所以,即,所以數(shù)列的公差為,所以,所以,【小問2詳解】解:由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論