版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
晉中市重點(diǎn)中學(xué)2026屆數(shù)學(xué)高二上期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列中,,(),則等于()A. B.C. D.22.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),且,當(dāng)時(shí),,則不等式的解集為()A. B.C. D.3.已知方程表示雙曲線,則實(shí)數(shù)的取值范圍是()A.或 B.C. D.4.已知函數(shù),,若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.6.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標(biāo)系中,,點(diǎn)P滿足,設(shè)點(diǎn)P的軌跡為C,下列結(jié)論正確的是()A.C的方程為B.當(dāng)A,B,P三點(diǎn)不共線時(shí),面積的最大值為24C.當(dāng)A,B,P三點(diǎn)不共線時(shí),射線是的角平分線D.在C上存在點(diǎn)M,使得7.已知等比數(shù)列的前n項(xiàng)和為,且,則()A.20 B.30C.40 D.508.已知,為雙曲線:的焦點(diǎn),為,(其中為雙曲線半焦距),與雙曲線的交點(diǎn),且有,則該雙曲線的離心率為()A. B.C. D.9.設(shè)為數(shù)列的前n項(xiàng)和,,且滿足,若,則()A.2 B.3C.4 D.510.如圖,P為圓錐的頂點(diǎn),O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內(nèi)接正三角形.則()A. B.C. D.11.連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為12.橢圓的長軸長是()A.3 B.6C.9 D.4二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為_____________.14.已知數(shù)列中,.若為等差數(shù)列,則______.15.已知定義在R上的函數(shù)的導(dǎo)函數(shù),且,則實(shí)數(shù)的取值范圍為__________.16.如圖,在長方體ABCD—A1B1C1D1,AB=BC=2,CC1=1,則直線AD1與B1D所成角的余弦值為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)曲線在點(diǎn)(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當(dāng),求a的取值范圍.18.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個(gè)數(shù).19.(12分)已知拋物線:的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為.(1)求的方程;(2)為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)B,C為E上兩個(gè)不同的點(diǎn),其中B點(diǎn)在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.20.(12分)某企業(yè)計(jì)劃新購買臺(tái)設(shè)備,并將購買的設(shè)備分配給名年齡不同(視為技術(shù)水平不同)的技工加工一批模具,因技術(shù)水平不同而加工出的產(chǎn)品數(shù)量不同,故產(chǎn)生的經(jīng)濟(jì)效益也不同.若用變量表示不同技工的年齡,變量為相應(yīng)的效益值(元),根據(jù)以往統(tǒng)計(jì)經(jīng)驗(yàn),他們的工作效益滿足最小二乘法,且關(guān)于的線性回歸方程為(1)試預(yù)測一名年齡為歲的技工使用該設(shè)備所產(chǎn)生的經(jīng)濟(jì)效益;(2)試根據(jù)的值判斷使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強(qiáng)弱(,則認(rèn)為與線性相關(guān)性很強(qiáng);,則認(rèn)為與線性相關(guān)性不強(qiáng));(3)若這批設(shè)備有兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是,.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本不增加;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若工序出現(xiàn)故障,則生產(chǎn)成本增加萬元;若兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加萬元.求這批設(shè)備增加的生產(chǎn)成本的期望參考數(shù)據(jù):,參考公式:回歸直線的斜率和截距的最小二乘估計(jì)分別為,,.21.(12分)已知函數(shù)(1)若,求曲線在處的切線方程(2)討論函數(shù)的單調(diào)性22.(10分)在中內(nèi)角A、B、C所對的邊分別為a、b、c,且(1)求角A(2)若,,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由已知條件可得,,…,即是周期為3的數(shù)列,即可求.【詳解】由題設(shè),知:,,,…,∴是周期為3的數(shù)列,而的余數(shù)為1,∴.故選:D.2、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導(dǎo)數(shù),分析可得在上為減函數(shù),進(jìn)而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當(dāng)時(shí),,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D3、A【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A4、A【解析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實(shí)數(shù)的取值范圍.【詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式恒成立問題,解題關(guān)鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時(shí)要注意全稱量詞與存在量詞對題意的影響.等價(jià)轉(zhuǎn)化如下:(1),,使得成立等價(jià)于(2),,不等式恒成立等價(jià)于(3),,使得成立等價(jià)于(4),,使得成立等價(jià)于5、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因?yàn)?,所以,所?故選:A6、C【解析】根據(jù)題意可求出C的方程為,即可根據(jù)題意判斷各選項(xiàng)的真假【詳解】對A,由可得,化簡得,即,A錯(cuò)誤;對B,當(dāng)A,B,P三點(diǎn)不共線時(shí),點(diǎn)到直線的最大距離為,所以面積的最大值為,B錯(cuò)誤;對C,當(dāng)A,B,P三點(diǎn)不共線時(shí),因?yàn)椋陨渚€是的角平分線,C正確;對D,設(shè),由可得點(diǎn)的軌跡方程為,而圓與圓的圓心距為,兩圓內(nèi)含,所以這樣的點(diǎn)不存在,D錯(cuò)誤故選:C7、B【解析】利用等比數(shù)列的前n項(xiàng)和公式即可求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.8、B【解析】根據(jù)求得的關(guān)系,結(jié)合雙曲線的定義以及勾股定理,即可求得的等量關(guān)系,再求離心率即可.【詳解】根據(jù)題意,連接,作圖如下:顯然為直角三角形,又,又點(diǎn)在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.9、B【解析】由已知條件可得數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,因?yàn)椋?,化簡得,,解得或(舍去),故選:B10、B【解析】先求出,再利用向量的線性運(yùn)算和數(shù)量積計(jì)算求解.【詳解】解:由題得,,故選:B11、D【解析】計(jì)算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計(jì)算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為m,n,則共有個(gè)基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點(diǎn),則事件“t=12”的概率為,故A錯(cuò)誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯(cuò)誤;事件“t=2”與“t≠3”不是互斥事件,故C錯(cuò)誤;事件“t>8且mn<32”有共9個(gè)基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D12、B【解析】根據(jù)橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),求出切線斜率,進(jìn)而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:14、【解析】利用等差中項(xiàng)求解即可【詳解】由為等差數(shù)列,則,解得故答案為:15、【解析】由題意可得在R上單調(diào)遞增,再由,利用函數(shù)的單調(diào)性轉(zhuǎn)化為關(guān)于的不等式求解【詳解】定義在R上的函數(shù)的導(dǎo)函數(shù),在R上單調(diào)遞增,由,得,即實(shí)數(shù)的取值范圍為故答案為:16、【解析】以為原點(diǎn),所在直線為軸的正方向建立空間直角坐標(biāo)系,求出,的坐標(biāo),由向量夾角公式可得答案.【詳解】以為原點(diǎn),所在直線為軸的正方向建立如圖的坐標(biāo)系,∵AB=BC=2,CC1=1,∴,,,,則,,則,,則cos<,>==,即AD1與B1D所成角的余弦值為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導(dǎo)數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導(dǎo)數(shù),分類討論導(dǎo)數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因?yàn)榍€在點(diǎn)(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以當(dāng)時(shí),取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當(dāng),即,(),設(shè),(),則,當(dāng)時(shí),由得,此時(shí),此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí),此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí)在內(nèi),,在內(nèi),,故,顯然時(shí),,不滿足當(dāng)恒成立,綜上述:.18、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時(shí)函數(shù)沒有零點(diǎn);或時(shí)函數(shù)有且只有一個(gè)零點(diǎn);時(shí),函數(shù)有兩個(gè)零點(diǎn).【解析】(1)先對函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)?,所以,?dāng)時(shí),恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點(diǎn),由,得.令,則.或時(shí),,時(shí),,所以在和上都是減函數(shù),在上是增函數(shù),時(shí)取極小值,又當(dāng)時(shí),.所以時(shí),關(guān)于的方程無解,或時(shí)關(guān)于的方程只有一個(gè)解,時(shí),關(guān)于的方程有兩個(gè)不同解.因此,時(shí)函數(shù)沒有零點(diǎn),或時(shí)函數(shù)有且只有一個(gè)零點(diǎn),時(shí),函數(shù)有兩個(gè)零點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點(diǎn),解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,考查數(shù)形結(jié)合的思想,屬于中檔題19、(1)(2)【解析】(1)根據(jù)題意,結(jié)合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設(shè),根據(jù)拋物線的對稱性,可表示出B,C的坐標(biāo),從而利用向量的坐標(biāo)運(yùn)算,求得所設(shè)參數(shù)值,進(jìn)而求得答案.【小問1詳解】的準(zhǔn)線為:,作于R,根據(jù)拋物線的定義有,所以,因?yàn)樵诘膬?nèi)側(cè),所以當(dāng)P,Q,R三點(diǎn)共線時(shí),取得最小值,此時(shí),解得,所以的方程為.小問2詳解】因?yàn)锳B,OC互相垂直平分,所以四邊形AOBC是菱形.由,得軸,設(shè)點(diǎn),則,由拋物線的對稱性知,,,.由,得,解得,所以在菱形中,,邊上的高,所以菱形的面積.20、(1)元;(2)使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強(qiáng);(3)0.13萬元.【解析】(1)直接把代入線性回歸方程即得解;(2)先求出,再代公式求出相關(guān)系數(shù)比較即得解;(3)設(shè)增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5,求出對應(yīng)的概率即得解.小問1詳解】解:當(dāng)時(shí),.所以預(yù)測一名年齡為歲的技工使用該設(shè)備所產(chǎn)生的經(jīng)濟(jì)效益為元.【小問2詳解】解:由題得,所以,所以.因?yàn)?,所以與線性相關(guān)性很強(qiáng).所以使用該批設(shè)備的技工人員所產(chǎn)生的的效益與技工年齡的相關(guān)性強(qiáng).【小問3詳解】解:設(shè)增加的生產(chǎn)成本為ξ(萬元),則ξ的可能取值為0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.13(萬元),所以這批設(shè)備增加的生產(chǎn)成本的期望為0.13萬元.21、(1)(2)答案見解析【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求得切線斜率,結(jié)合切點(diǎn)可得切線方程;(2)求導(dǎo)后,分別在、和的情況下,根據(jù)的正負(fù)可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030燃?xì)庠O(shè)備行業(yè)市場供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030照明行業(yè)智能照明與節(jié)能技術(shù)發(fā)展分析
- 2025-2030熱泵技術(shù)行業(yè)市場需求現(xiàn)狀與產(chǎn)業(yè)鏈發(fā)展前景分析報(bào)告
- 2025-2030濰坊消防裝備行業(yè)市場供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030湘菜地方標(biāo)準(zhǔn)制定對品質(zhì)提升的作用
- 2025-2030消防報(bào)警系統(tǒng)自動(dòng)化行業(yè)市場供需趨勢分析及智能防控規(guī)劃
- 2025-2030消防安全智能監(jiān)控設(shè)備行業(yè)發(fā)展趨勢標(biāo)準(zhǔn)制定與發(fā)展分析
- 2025-2030消費(fèi)級(jí)AR設(shè)備用戶體驗(yàn)痛點(diǎn)與改進(jìn)方向研究
- 2025-2030消費(fèi)級(jí)AR眼鏡光學(xué)方案創(chuàng)新與市場接受度調(diào)研
- 2025-2030消費(fèi)電子設(shè)備微小元器件加工工藝改進(jìn)與發(fā)展極品工藝方案研究
- 2025年中國電熱式脫皮鉗市場調(diào)查研究報(bào)告
- DBJT15-212-2021 智慧排水建設(shè)技術(shù)規(guī)范
- 新課標(biāo)文科全科-2026高考大綱TXT便利版
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全風(fēng)險(xiǎn)分級(jí)管控與隱患排查治理標(biāo)準(zhǔn)》
- 民辦學(xué)校退費(fèi)管理制度
- CJ/T 3066-1997內(nèi)磁水處理器
- 院內(nèi)急重癥快速反應(yīng)小組
- 湖南省省情試題及答案
- T/CIE 115-2021電子元器件失效機(jī)理、模式及影響分析(FMMEA)通用方法和程序
- 智能路燈項(xiàng)目立項(xiàng)申請報(bào)告模板
- 臨時(shí)用電變壓器安裝方案
評(píng)論
0/150
提交評(píng)論