版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Copyright?2025HatchWorksAI,Allrightsreserved.
Thise-bookisprotectedbycopyrightlaws.Youmaynotreproduce,share,ordistributeitwithoutpermission
fromHatchWorksAI,exceptasallowedbytheCreativeCommonslicensebelow.
CreativeCommonsLicense(CCBY-NC-ND)
ThisworkislicensedunderaCreativeCommons
Attribution-NonCommercial-NoDerivs4.0License.
Youcanshareitifyougivecredit,don’tmodifyit,anddon’tuseitcommercially.
Formoreinfo,visit:/licenses/by-nc-nd/4.0
Around-upofindustrystats,research,andinsightstounderstand
whereAIstands,howitgothere,andwhereit’sgoing.
Index
ALookatWhat’stoCome1
AIinAction:IndustryApplications4
TechTrendsof202420
TheRedTapeofIntelligence:42
GoverningAI’sPower
WhattoWatchOutFor:Ethics,Data,
andUserExperience46
LookingForward:AIIsEasytoDo.56
ALookat
What’stoCome
ForewordbyOmarShanti,CTOatHatchWorksAI
If2023wastheyearofthe
experiment,2024wastheyearofthepilot.
ThebarriertoAIadoptionhasneverbeenlower.
Overthepastyear,amyriad
ofcompanieshavebuilton
developmentsinpre-trained
models,open-sourcelibraries,andmanagedAIservicestounlock
differentiatedexperiencesfortheirenterprises.
Yetnotallsucceeded.Whetherforreasonsofcommercialviability,
securityandprivacy,governinghallucinations,orothers,the
majorityoftheseprojectsfailtomakeitbeyondapilot.
1
AIiseasytodo,it,sjusthardtodowell.
Thisreportaimstodistillthesignalfromthenoiseandprovide
clarityonwhat‘doingitwell’lookslikeandwhotheplayersarethatareleadingtheway.We’vecompiledindustryresearchandreportsintoasingle,incisivedocumenttohelpcompaniesdoAIbetter.
Sowhattoexpect?
You’llfindabalancedanalysisofthemostimportanttrends
shaping2025—fromgametheoreticanalysisabouttheleadingAIcompaniesdowntotheemergentpatternoftheagentmesh,withdecentralizedmodelsdividingandconquering.You’lllearnaboutabreadthofuse-cases,showcasingwhereandhowAIisusedacrosstheenterprise.
You’llalsoreadinsightsfromourteamatHatchWorksAI—thepeopleworkingattheintersectionsof
GenerativeAI,DataManagement,andSoftwareInnovationeveryday.
Whetheryou’reconsideringyourfirstgenerativeAI
pilotorscalinganenterprise-gradesolution,you’ll
findactionableguidanceandstrategieshere.Let’s
make2025theyearyourAIinitiativesmovefromgoodenoughtoexceptional.
Andwiththat,let,sbegin.
3
2
AIinAction:
IndustryApplications
ThissectionbringstogetherAIresearchfromacrossthewebtoshowhowAIisbeingusedinbusinesstodayandwhatitmeansforthefuture.
IfitfeelslikeeverycompanyaroundyouisusingAI,it’sbecausealmosteverycompanyis.85%oforganizationsarecurrentlytestingorusingGenAIinsomeform.
Butthere’satwist—only37%ofexecutivesbelievetheirGen
AIinitiativesaretrulyproduction-ready.Thatmeans2024wasfullofpilotsthatneversawproduction.That’ssomethingthe
C-Suitewillwanttochangein2025.Companieswillberacingtodriveoperationvalueandprovetheinvestmentsthey’vemadeandaremakingwillbeworththepayoff.
Giventhat,alleyesareon2025tobetheyearoftheproduct.
That’sonlythecaseinthecompanieswhoarereadilyembracingGenAIratherthanjustexperimentingwithit.Wharton’s
researchshowsfrequentGenAIuseismostpopularamong:
Smallercompanies(revenue$50Mto$250M)andMid-sizedcompanies(revenue$250Mto$2B):80%78%.
Andwithusecomestheneedforleadership.ChiefAIOfficers(CAIO)arenowin46%ofcompanies.
Whilecompaniesarefiguringouttheirstrategyandthe
productsthey’lluseGenAItoproduce,theiremployees
areusingthistechnologyintheirday-to-daylives.Younger
individuals(ages18-34)areleadingthechargeandaccountfor80%ofuseintheorganizationsadoptingAI.
Regardlessofage,useisontheup—72%ofdecision-makersuseGenAIatleastweekly,upfrom37%in2023(Wharton).
5
4
Amongenterprises,investmentinGenAIhasrisenfrom$4.5Mto$10.3M.
Mostofthatinvestmentisgoingtowardtraining,consulting,andonboarding
employees.
Thisallocationreflectsaclearpriority:ensuringthatAIis
notjustadopted,butadoptedwell.AItools,nomatterhowadvanced,areonlyaseffectiveasthepeopleandprocessesbehindthem.TrainingensuresthatemployeesunderstandhowtointegrateAIintotheirworkflowsefficientlyand
appropriately,minimizingresistanceandmaximizingimpact.
Consultingserviceshelporganizationsnavigatethecomplex
landscapeofAIimplementation,providingexpertiseonaligningtoolswithbusinessgoalsandavoidingcommonpitfalls.Finally,onboardingaddressesthepracticalrealitiesofscalingAI,
helpingteamsadoptthetechnologyinawaythatensurescost-effectivenessandsustainablelong-termusage.
Byinvestingintheseareas,enterprisesarenotjustdeploying
AI—they’rebuildingtheinternalexpertiseandsystems
necessarytomakeitworksmarter,notharder.Thefocuson
thesefoundationaleffortsdemonstratesagrowingrecognitionthatAIsuccesshingesasmuchonpreparationandexecutionasitdoesonthetechnologyitself.
7
6
MaximizeYourAIInvestment
FromStrategytoSkillBuilding
OurAIStrategy&Roadmapserviceisn’tjustabout
planning;it’saboutempoweringyourorganizationtoadoptAIeffectively.
WecombinestrategicconsultingwithAIEmpowerment
TrainingtoensureyourteamsarepreparedtoputAIintoaction.Frompinpointinghigh-ROIopportunitiestohands-onskillbuilding,wehelpyouinvestinAIthatdelivers
tangiblebusinessresults.
CONTACTUS
Giventhatamajorityofexecsdon’tfeeltheirpilotsare
product-ready,thisfocusontraining,bringinginexperts,andonboardingthetoolsthemselvesmakesperfectsense.AIisdeceptivelyhardtodowell,soitiscrucialtobuildsubject
matterexpertise.
ITTeamsareadoptingGenAIfasterthananyoneelse,with62%usingitinproduction.
ItmakessensethatITteamsleadthewaywithAIadoption.Whetherincreatingself-servehelp-desksorlevelinguptheircodingprocessesusingagenticcopilots,theirdigital-first
workflowsareripeforinnovation.
9
8
Butthey,renottheonlyones.Useiswidespread:
Acrossbusinesses,AIismakingwaves,impactingFrontof
House(userexperiences),BackofHouse(operations),andtheSoftwareDevelopmentLifecycle.
Thesetransformationstypicallyfallintothreepatterns:
SemanticAnalysis:Understandingmeaningfrom
multimodalinputssuchasuserevents,intent,sentiment,andbehaviors.Forexample,analyzingcustomerqueriesinrealtimetoroutethemtotherightsupportorsalesteams.
ContentCreation:Generatingmultimodaloutputslike
marketingcampaigns,chatconversations,blogposts,andtrainingmaterials.Thinkautomatedcontenttailoredto
specificaudiencesatscale.
PatternRecognition:Identifyingcommonoccurrences
indatastreams,whetherit’sfrauddetectioninfinance,
predictivemaintenanceinmanufacturing,orrecurringuserbehaviorsinappdevelopment.
Byenablingcompaniestounderstand,create,andoptimize
atscale,thesepatternsarerevolutionizingworkflowsacross
departmentsandindustriesalike.WhenpairedwithclassicalAItechniques,generativeAIopensupnewpossibilitiesforsolvingsector-specificchallengeswithprecisionandimpact.
Here’saglimpseathowit’sbeingappliedacrosssectorslikeFinance,Retail,Healthcare,andManufacturing:
11
10
Retail&
Finance
E-Commerce
TopUseCases
Frauddetection,automatedunderwriting,regulatorycompliance,andpersonalizedfinancialplanning.
AIinAction
Banksandfinancialinstitutions,likeMorganStanleyare
embeddingRAG-poweredLLMsintocustomersupport,lettingchatbotspullreal-timefinancialdatafrominternaldatabasestoofferaccount-specificadvice.
ScalingChallenge
Financeisahighlyregulatedsector,soGDPRandSOC2
complianceoftenslowdowndeployment.Companiesare
increasinglyusingon-premiseLLMstomaintaindataprivacy.
TopUseCases
Customerservicechatbots,productrecommendations,dynamicpricing,andinventoryoptimization.
AIinAction
RetailerslikeAmazonareusingmultimodalLLMsthatanalyze
bothtext(customerqueries)andimages(uploadedproduct
images)todeliverpersonalizedproductrecommendations.Theyalsospent2024workingonAIagentswhowilldoyourshoppingforyou.It’syettobereleasedbuttheypromiseit’scoming.
ScalingChallenge
RetailersneedtointegrateAIacrossmultiplecustomer
touchpoints(e-commercesites,stores,andsupportcenters)andcoordinateAI-drivendecision-makingacrossdepartmentslike
logisticsandmarketing.
13
12
HealthcareManufacturing
TopUseCases
AI-drivendiagnostics,documentsummarization,andpatientsupportsystems.
AIinAction
HospitalsaredeployingLLMstoreviewandsummarizepatientmedicalrecords,whilemultimodalAIcananalyzeX-rays,MRIs,andhealthchartssimultaneously.HIPAAcomplianceisdrivingdemandforon-premLLMsinsteadofAPI-basedmodelslike
ChatGPT.
ScalingChallenge
Healthcareprovidersfacesignificantcompliancehurdles(likeHIPAA)andmustensurethatsensitivepatientdataremainson-premises,whichrequiresfine-tuningmodelsandusingprivateLLMs.
TopUseCases
Predictivemaintenance,qualitycontrol,supplychainoptimization,andfactoryautomation.
AIinAction
ManufacturersareintegratingAIagentsintoproductionlinestopredictequipmentfailures,automateinspectionworkflows,andensurejust-in-timedeliveryofcomponents.Siemens
hasimplementedAIforpredictivemaintenance,enablingthecompanytodetectpotentialequipmentfailuresearlyand
schedulemaintenanceaccordingly.
ScalingChallenge
AIneedstobetightlyintegratedwithIoTdevicesand
operationaltech(OT)systemsonthefactoryfloor,requiringedgedeploymentofAImodels.
15
14
Greaterexperimentationhasshiftedsentiment,withmoredecision-makersfeeling“pleased,”“excited,”and“optimistic,”andless“amazed,”“curious,”and“skeptical.”Negative
perceptionsarealsosofteningslightly,asdecision-makersseemorepromiseinGenAI’sabilitytoenhancejobswithoutreplacingemployees.
Whereconcernsarecited,theycontinuetobearoundaccuracyorbias,dataprivacy,teamintegration,andethicalissues(thoughintensityofthesebarriershasslightlysoftenedfromlastyear).
Peopleandprocessesarechallengesleadershipteamsarekeentosolve:
It’snotonlythedifficultyinworkingwithmodelsthatisholdingbusinessesbackfromsuccessfullyusingAI.Thebiggestbarrierinenterpriseadoptionrelatestopeopleandprocesses:
17
16
Oneofthewaysleadershipteamscansolvethisisby
consultingpeoplewhohaveAIliteracy,arespecializedin
implementingAIsoftwaresolutions,understandthecosts,canmakethebusinesscase,andprovideareliableROI
estimate.Andthat’sexactlywhatsomebusinessesareupto:
Amongthoseplanningtohireexternalconsultants,
63%saythatthese
consultantswillhaveasubstantialrole,
while29%indicatethey’llplayamoderaterole.
Only8%willrelyprimarilyonconsultants.
18
AnexampleofusingexternalconsultantstoleverageAIinthebusinessisCox2MandtheirKayoAIAssistant:
“HatchWorksAI’sGenAIInnovationWorkshophastransformedhowwethinkaboutGenAIbygettingourentireteamon
thesamepageandspeakingthesamelanguage.Itisthe
jumpstartweneededtohelpusidentifyandstartbuildingPOCsforGenAIusecasesacrossourbusiness,”
MatthewShorts
ChiefProduct&TechnologyOfficeratCox2M
19
TechTrendsof2024
Thissectionshowsuswhattrendsweobservedin2024…onesthatarelikelytocontinueorshapeusein2025andbeyond.
AnAIoligopolyhasformed,centralizingcontrolandmonetizationofAIamongthe‘Big3’:Google(Gemini),Anthropic(Claude),andOpenAI(GPT).
Google,Anthropic,andOpenAIownandmanagethemost
advancedLargeLanguageModels(LLMs)andGenerativeAI
modelsintheworld.IndividualusersandenterprisesaliketurntothemforAIneeds.
Anddrawbacks:
HighCosts:APIusagecanbecomeextremelycostlyasusagescales,
especiallyforcompaniesofferingAI-drivenproducts.
LossofControl:Businessescan’t
fullycontrolorcustomizecentralizedmodels.They’relimitedtotheupdates,features,andrestrictionsimposedbytheplatform.
DataPrivacyRisks:UsingcentralizedmodelslikeGPTmayexposesensitivedatatoexternalproviders.
LackofCustomization:ModelslikeGPTare“general-purpose”andoftenrequireadditionalfine-tuningor
adaptationtofitnicheindustryneeds.
Therearebenefitstothis:
FastAccesstoCutting-EdgeTech:Small-tomid-sizebusinessescanaccessthemostpowerfulmodelswithouttrainingtheirown.
EconomiesofScale:BigcompaniescancentralizeR&D,lowering
costsforsmallerenterprisesthat"subscribe"totheirservices.
EaseofUse:Businessesgetplug-and-playmodels(viaAPIs)anddon’tneedtomaintaininfrastructureorhiremachinelearningengineers.
Inresponse,decentralizationisontherise.
Noteveryonewantsto‘buy-in’totheoligarchyoffering––AIconsumersandproducersalike.
ThePowerPlaysBehindPrivatization
ThecentralizationofAIbyafewdominantplayershassparkedintensecompetition,resemblingahigh-stakesgameof
oligopoly.Atitscore,thisisn’tjustadebateaboutethicsorthespiritofinnovation—it’sapowerstruggleoverwhocontrolsthefutureofAI.
TakethepublicclashbetweenElonMusk,MarkZuckerberg,
andOpenAICEOSamAltman.MuskandZuckerberghave
openlycriticizedAltman’spushtoprivatizeOpenAI,framingitasabetrayalofitsoriginalnon-profitmission.However,thisisasmuchaboutstrategicpositioningasitisaboutprinciples.BychallengingOpenAI’strajectory,MuskandZuckerbergarevyingtoweakenacompetitor’snarrativeandbolstertheirowninfluencewithintheAIecosystem.
Behindtherhetoric,thesemovesarecalculatedplaysto
reshapetheAImarket.Inanoligopoly,wheredominance
dependsoncontrollinginnovationandaccess,publicdisputesoftenserveasatooltoswaypublicopinion,attracttalent,anddrawinvestorattention.ForMuskandZuckerberg,underminingOpenAI’scredibilityisn’tjustaboutideals—it’saboutsecuringalargershareoftheAImarketpie.
21
20
CompaniesarenolongercontenttorelyonexternalAPIsand“black-box”modelscontrolledbyBigTech.Instead,
theyareexploringalternativesthatprovidegreatercontrol,customization,andcost-efficiency.
Amazonisreducingitsrelianceonthird-partyLLMAnthropicbycreatingtheirown,nowcalledthe“Nova”suite.(Reuters)Thisisprobablytohedgetheirbetsandlimittheirrelianceonasystemtheydon’townorcontrol.
Thiswillbecomemoreandmorepopularasgiantswiththeresourcestoproveitspossibledojustthat.
Decentralizationistakingseveralforms:
Open-SourceAIModels
Theriseofopen-sourceAImodelsisdisruptingthecontrolofproprietarymodelsheldbyGoogle,Anthropic,andOpenAI.
BusinessesarenolongerlockedintoAPI-basedfeesorforcedtoworkwithblack-boxmodels.Open-sourcemodelslikeMeta’sLLaMA3andMistralareshiftingpowerfromthe“Big3”backtoenterprisesthatcanfine-tuneanddeployAImodelsin-house.
ThisiseasytodothankstoHuggingFace’srepositoryofopen-sourcemodelswhereyoucansearchfortheexactfunctionalityyouneed.
22
Deepseek’srecentreleaseofitsR1modelisagreatexampleofthisproducinganadvancedreasoningmodelforreportedlyunder$6MvsOpenAIandothercompetitors$100sofmillionstodevelopsimilarreasoningmodels.
Thisreductionincostandincreasedcompetitionisnotabadthingthoughbecausewithincreasedcompetitioncomesgreatinnovation.
ThisleadstoaparadoxknownasJevon’sparadoxwhichstateswhentechnologicalimprovementsincreasetheefficiency
ofusingaresource,itparadoxicallyincreasestheoverallconsumptionofthatresource.
23
Howopen-sourcemodelsdecentralizeAI:
?Companiescanself-hostmodels,avoidingrelianceonGoogleandOpenAIAPIs.
?Businessescanfine-tuneopenmodelsfortheirspecificneeds,ratherthanusing“one-size-fits-all”general-purposemodels.
?Itenablescompaniesinfinance,healthcare,andgovernmenttoretainfullcontroloverdataprivacy,ensuringsensitive
informationneverleavestheirnetwork.
There’salsoanewopen-sourceAImodelonthehorizonthatsomereportisperformingbetterthanChatGPT.It’scalled
DeepSeekandwastrainedforonly$5M.Forcontext.GPT-4requiredabout$63Mtotrain.
TheAgentMesh
Multi-agentsystemsareevolvingintosomethingevenmore
powerful:theAgentMesh.Inthismodel,tasksaren’tjustsplitamongagents—theyarecontinuouslypassedfromoneagenttoanother,eachonerefiningtheoutput.Thinkofitlikeacall
centerforAIagents,whereeachagentplaysaroleinperfectingtheuser’squery.
StatSpotlight
Skynetsecured$1.2millioninpre-seedfundingtodevelopdecentralizedAIagentpayments,
indicatinginvestorconfidenceindecentralizedAImodelsandagent-drivensystems.
HowtheagentmeshdecentralizesAI:
?Itreplacesthe“monolithicmodel”approach(likeGPT-4)withanetworkofmodelsandagentsthatworktogether.
?Eachagentspecializesinonetask(e.g.,imagerecognition,
textsummarization)andcallsotheragentsforhelpasneeded.
?Businessescanrunopen-sourcemodelsasagentsinsteadofrelyingonasinglecommercialAPI.
25
24
Whilelargelanguagemodels
exponentiallygrowinsize,returnsarediminishing.
Foryears,theAIindustryoperatedunderasimpleassumption:biggermodelsarebettermodels.Scalingupthenumberof
parametersinlargelanguagemodels(LLMs)likeGPT,Claude,andGeminiproducedconsistentleapsinperformance.Butin2024,thatassumptionbegantocrack.
Largermodelsaren’tyieldingproportionategainsanymore.
Instead,theindustryisseeingsignsofdiminishingreturns.
Thistrendhasbeenobservedbyresearchers,AIleaders,andenterprisesalike.AsLLMsgrowfrombillionstotrillionsof
parameters,theirincrementalgainsareshrinking.Companiesinvestinginnext-genLLMsareforcedtoaskacriticalquestion:Isitworthittochase“bigger,”orshouldwechase“smarter”?Theanswerisn’ttostopinvestinginAI—it’stoshiftthefocustowardbetterarchitecture,specialization,andorchestration.There’sstillmassiveuntappedvalueintoday’smodels.Even
ifmodelsdidn’tgrowanylarger,organizationscouldunlocksignificantreturnsbyimprovinghowtheyleveragethese
models.
Severalstudiesandreal-worldinsightssupporttheclaimthatlargermodelsarenolongeryieldingsubstantialfunctional
improvements.Here’stheproof:
26
EmpiricalStudiesShowaPlateauinPerformance
AstudypublishedonArxiv(2024)observedthatonceLLMsexceedacertainparameterthreshold,performancegainsflatten.Forinstance,modelstrainedwith10xmoreparametersshowedonlya1.6ximprovementonbenchmarkslikenaturallanguagereasoningandpersuasiontasks.
Thissuggeststhatparametergrowthaloneisn'tenoughtodrivethenextwaveofAIprogress.
OpenAI’sOwnReportsConfirmtheTrend
OpenAIhasacknowledgedthattheexpected
leapsinperformancefromGPT-4toGPT-4-
turboandfuturemodelshavenotmaterialized.WhileearlyversionsofGPT-3andGPT-
4delivereddramaticleapsinreasoning,
performancegainsfromGPT-4-turbohavebeenincrementalatbest.
Instead,OpenAIhasshifteditsfocustoward
buildingmultimodalmodels(likeGPT-4Vision)andtool-usingLLMs(suchasthosethatuse
27
browsing,plugins,andcodeinterpreters)tounlockmorepracticalcapabilities.
28
DiminishingReturns
onComputationalCost
Thecostofcomputationis
skyrocketing,butperformanceislevelingoff.Training
trillion-parametermodelsis
exponentiallymoreexpensivethantrainingbillion-parametermodels.
A2024studyrevealedthat
forevery10xincreasein
parametercount,inferencecostsroseby30x,while
performancegainswere
marginal.Thishaspromptedashiftawayfrombrute-forcescalingtowardefficient
modeldesignsthatprioritizesmartercomputationover
size.
Evenifmodelsstoppedgrowingtoday,there’sstillavast
amountofvaluetobegainedfromAIbyimprovinghowmodelsareused.Here’show:
1.BetterArchitecture:Multi-Agent
SystemsandWorkflowOrchestration
?Insteadofusingasingle,massiveLLMtoperformeverytask,companiescanbuildmulti-agentworkflowswheresmaller,
specializedmodelscollaboratetosolvecomplexproblems.
?Theseagentscanperformdifferentroles,suchasretrievingknowledge,summarizingdata,andensuringcompliance,
workingtogethertodeliverfasterandmoreaccurateresults.
TheycanevenperformQAandrefactorcode.
?Example:Acustomersupportsystemcoulduseonemodelforretrievingrelevantknowledgeandanotherforsummarizingaticket—insteadofrelyingononegeneral-purposeLLMfor
everything.
29
2.CustomizationandFine-TuningforSpecificBusinessNeeds
?Fine-tuningsmallermodelswithproprietary,high-qualitydatasetsallowsbusinessestobuildmodelsthatperformexceptionallywellfortheiruniqueusecases.
?Insteadofpayingtouseamassive,generalizedAPIforevery
task,companiescanfine-tuneopen-sourcemodelslikeLLaMAorMistraltohandletaskslikelegalreasoning,medicaldiagnostics,orcompliancereviews.
?Thisapproachismorecost-effectiveandallowsbusinessestoretainfullcontrolovertheirdataandworkflows.
3.Data-FirstStrategies:FocusingonQualityOverQuantity
?Thequalityofthedatausedtotrain,fine-tune,andaugmentmodelsisjustasimportantasthesizeofthemodelitself.
?Businessesthatinvestinclean,well-organized,anddomain-
specificdatawillunlockmorevaluethanthosethatsimplyadoptthelargestavailablemodels.
?Example:Ahealthcareorganizationthatcuratesahigh-qualitydatasetofde-identifiedmedicalrecordscanbuildamodelthatoutperformsgeneral-purposeLLMstrainedonpublicdatasets.
30
4.MultimodalCapabilities:ExpandingBeyondText
?MultimodalAIcanprocessimages,text,andaudiosimultaneously,enablingricher,morecontextual
understanding.
?Insteadofexpandingmodelsize,companiescanfocuson
unlockingnewinputformatstoimprovehowAIsystemsinteractwiththeworld.
Example:AretailercanusemultimodalAItoprocessproductimagesandcustomerquestions,generatingrecommendationsthatfeelmorepersonalizedandvisuallyrelevant.
31
ThetraditionalBuild-vs.-Buy
equationhaschanged.
In2024,manycompaniesmovedbeyondsimple“buyorbuild”
strategies.Instead,theyusedahybridapproach—onewherethey:
?Boughtoff-the-shelfLLMsforgeneral,low-stakesusecases(likemarketingcontent,chatbots,etc.).
?Builtfine-tuned,customizedLLMsforhigh-stakes,proprietaryprocesses(likelegalreasoningorhealthcaredecision-making).
?OrchestratedAIagentsandmulti-modelsystemstogetthebestofbothworlds—fasterperformance,lowercosts,anddomain-specificintelligence.
Thishybridstrategyallowscompaniestooperateinamore
agileway,usingpre-builtAIsolutionswherepossiblewhile
buildingandorchestratingcustomAIworkflowsforareaswherepersonalization,privacy,orcostsavingsmattermost.
Arecentsurveyrevealedthat63%ofseniorITleadersare
usingahybridAIstrategy,blendingoff-the-shelfAPIs,open-
sourcemodels,andagent-basedorchestrationtomanagecost,performance,andprivacy.
Nowit’sbuild,buy,ororchestrate.
WhentoUsethe
BUY
Approach
?Whentime-to-marketmattersmorethancost.
?Whenprivacy,
customization,andcompliancearen'tcritical.
?Whenyouhavelow-volume,low-stakesusecases(likemarketingcopy,blogwriting,orchatbots).
WhentoUsethe
BUILD
Approach
?Whendataprivacyandcompliancearenon-negotiable.
?Whenyouneedtotrainmodelsonproprietarydatasets(likelegalcontracts,healthcarerecords,orindustry-specificknowledge).
?WhenyouneedfullcustomizationandcontroloverAIbehavior.
?Whenyouneed
aportionofaSaaS
productbutnotthefullsolution(andyoudon’twanttopayforpartsofthetoolyouwon’tuse).
WhentoUsethe
ORCHESTRATE
Approach
?Whenyouhavea
mixof“build”and“buy”solutionsinplace.
?Whenyouwanttoreducerelianceonasingle,monolithicAIprovider.
?Whenyouhave
multipleworkflowsthatrequiretask-specific
models(agents).
33
32
Oneofthereasons,buildvsbuyhaschangedsomuchso
quicklyisbecausecreatingcustomsoftwareiseasiertodowiththehelpofAI.Enterprisescanrethinktheirinvestmentinofftheshelftoolsthatprovidethemgenericfunctionalityandoptforacustomsolutiontailoredtotheirbusiness.
Soundlikesomethingyourbusinesscouldbenefitfrom?
OurAI-PoweredSoftwareDevelopmentservice
infusesAIateverystage—whetheryou’recreatingnew,AI-nativeexperiencesormodernizinglegacysystems.
WeuseourGenerative-DrivenDevelopment?
approachtodeliverhigh-qualitysoftwarefaster,reducecosts,andkeepyouaheadofthecurve.
Transformthewayyoubuild,launch,andscalesoftwarewithintelligentautomationandagenticworkflows.
CONTACTUS
AIsystemsarealsogaining
agencyandautonomy
In2025,thespotlightisongivingAIsystemsagencyand
autonomy—enablingthemtonotjustgenerateinformation,
butexecutetasksinwaysthatresemblecoordinatedworkflows.Multi-agentsystemsaredrivingthisshift,asorganizationsmovebeyondrelyingonasinglelargemodellikeGPT-4orClaude.
Insteadofamonolithicapproach,businessesareadoptingnetworksofspecializedagentsthatcollaboratetocompletecomplextasks.
StatSpotlight
AIagentsarequicklybecomingproductionalized.OpenAIrecentlyreleaseditsAIAgent,Operatorwhichcancontrolyourbrowserandexecutetasksautonomously.
TherearealsoopensourceoptionsemerginglikeBrowserUsebuildingonAnthroicsModelContextProtocol(MCP).
Thisisgoingtointroduceawholenewwayofworking
alongwithaslewofnewAIusecases.Whenyoupairthatwiththecostofmodeltrainingandinferencedropping
dramaticallyyouhaveareceiptforgreatinnovation.
35
34
Theseagentsdon’treplacelargelanguagemodels(LLMs)—
theyenhanceand
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年湖北中醫(yī)藥高等專科學(xué)校輔導(dǎo)員考試筆試真題匯編附答案
- 稀土原輔材料預(yù)處理工崗前實操評優(yōu)考核試卷含答案
- 反應(yīng)香精配制工常識評優(yōu)考核試卷含答案
- 催化重整裝置操作工操作技能能力考核試卷含答案
- 2025四川雅安滎經(jīng)縣招聘社區(qū)專職工作者2人備考題庫附答案
- 保健調(diào)理師崗前離崗考核試卷含答案
- 陽極氧化工安全宣教競賽考核試卷含答案
- 礦用電機車裝配工安全實操能力考核試卷含答案
- 稱重傳感器裝配調(diào)試工崗前流程優(yōu)化考核試卷含答案
- 組坯熱壓工崗前誠信考核試卷含答案
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘考試備考題庫及答案解析
- 2025-2026學(xué)年滬科版八年級數(shù)學(xué)上冊期末測試卷(含答案)
- 委托市場調(diào)研合同范本
- 消防維保計劃實施方案
- 畜牧安全培訓(xùn)資料課件
- 有子女離婚協(xié)議書
- 2026四川省引大濟岷水資源開發(fā)限公司公開招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025至2030中國汽車檢測行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 2026年南昌健康職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試備考試題附答案詳解
- 2026年安徽糧食工程職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試備考試題及答案詳解
- 雨課堂學(xué)堂在線學(xué)堂云《中國電影經(jīng)典影片鑒賞(北京師范大學(xué))》單元測試考核答案
評論
0/150
提交評論