版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省武漢市外國語學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù),則()A.4 B.5C.6 D.72.觀察下列各式:,,,,,可以得出的一般結(jié)論是A.B.C.D.3.拋物線焦點坐標(biāo)為()A. B.C. D.4.若直線與直線垂直,則a的值為()A.2 B.1C. D.5.如圖,在三棱錐中,是線段的中點,則()A. B.C. D.6.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.7.若圓與圓外切,則()A. B.C. D.8.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.9.已知點,在雙曲線上,線段的中點,則()A. B.C. D.10.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知,,,則CD的長為()A. B.C. D.11.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.函數(shù)在區(qū)間(0,e)上的極小值為()A.-e B.1-eC.-1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的一條漸近線的傾斜角為,則雙曲線的離心率為___________.14.已知圓,直線與圓C交于A,B兩點,且,則______15.若x,y滿足約束條件,則的最小值為___________.16.已知橢圓的左、右焦點分別為,,上頂點為A,直線與橢圓C的另一個交點為B,則的面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點E是棱的中點,求平面與平面所成銳二面角的余弦值18.(12分)已知橢圓的焦距為,離心率為.(1)求橢圓的方程;(2)若斜率為1的直線與橢圓交于不同的兩點,,求的最大值.19.(12分)已知平面內(nèi)兩點,,動點P滿足(1)求動點P的軌跡方程;(2)過定點的直線l交動點P的軌跡于不同的兩點M,N,點M關(guān)于y軸對稱點為,求證直線過定點,并求出定點坐標(biāo)20.(12分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當(dāng)圓C面積最小時,求此時圓C的方程.21.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列前項和為,且滿足,求的表達(dá)式;(3)令,對于大于的正整數(shù)、(其中),若、、三個數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.22.(10分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進(jìn)行測試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.2、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題(猜想)3、C【解析】由拋物線方程確定焦點位置,確定焦參數(shù),得焦點坐標(biāo)【詳解】拋物線的焦點在軸正半軸,,,,因此焦點坐標(biāo)為故選:C4、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A5、A【解析】根據(jù)給定幾何體利用空間向量基底結(jié)合向量運算計算作答.【詳解】在三棱錐中,是線段的中點,所以:.故選:A6、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因為,且,所以.故選:B7、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.8、D【解析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得故選:【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題9、D【解析】先根據(jù)中點弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因為的中點為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D10、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B11、D【解析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列12、D【解析】求導(dǎo)判斷函數(shù)的單調(diào)性即可求解【詳解】的定義域為(0,+∞),,令,得x=1,當(dāng)x∈(0,1)時,,單調(diào)遞減,當(dāng)x∈(1,e)時,,單調(diào)遞增,故在x=1處取得極小值.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】利用雙曲線的漸近線的傾斜角,求解,關(guān)系,然后求解離心率,即可求解.【詳解】雙曲線一條漸近線的傾斜角為,可得,所以,所以雙曲線的離心率為.故答案為:2.14、-2【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,結(jié)合垂徑定理和勾股定理表示出圓心到弦的距離,再由點到直線的距離公式表示出圓心到弦的距離,解方程即可求得的值.【詳解】解:將圓的方程化為標(biāo)準(zhǔn)方程可得,圓心為,半徑圓C與直線相交于、兩點,且,由垂徑定理和勾股定理得圓心到直線的距離為,由點到直線距離公式得,所以,解得,故答案為:.15、##【解析】作出可行域,進(jìn)而根據(jù)z的幾何意義求得答案.【詳解】如圖,作出可行域,由z的幾何意義可知當(dāng)過點B時取得最小值.聯(lián)立,則最小值為.故答案為:.16、【解析】求出直線的方程,聯(lián)立方程,求得B點的坐標(biāo),從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理證出平面,即可證得;(2)以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,根據(jù)二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因為,所以平面,而平面,所以【小問2詳解】如圖所示,以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,于是設(shè)平面的法向量為,則,可取而平面的一個法向量為,所以故平面與平面所成銳二面角的余弦值為18、(1);(2).【解析】(1)由題設(shè)可得且,結(jié)合橢圓參數(shù)關(guān)系求,即可得橢圓的方程;(2)設(shè)直線為,聯(lián)立拋物線整理成一元二次方程的形式,由求m的范圍,再應(yīng)用韋達(dá)定理及弦長公式求關(guān)于m的表達(dá)式,根據(jù)二次函數(shù)性質(zhì)求最值即可.小問1詳解】由題設(shè),且,故,,則,所以橢圓的方程為.【小問2詳解】設(shè)直線為,聯(lián)立橢圓并整理得:,所以,可得,且,,所以且,故當(dāng)時,.19、(1)(2)證明見解析,定點坐標(biāo)為【解析】(1)直接由斜率關(guān)系計算得到;(2)設(shè)出直線,聯(lián)立橢圓方程,韋達(dá)定理求出,再結(jié)合三點共線,求出參數(shù),得到過定點.小問1詳解】設(shè)動點,由已知有,整理得,所以動點的軌跡方程為;【小問2詳解】由已知條件可知直線和直線斜率一定存在,設(shè)直線方程為,,,則,由,可得,則,即為,,,因為直線過定點,所以三點共線,即,即,即,即,即得,整理,得,滿足,則直線方程為,恒過定點.【點睛】本題關(guān)鍵在于設(shè)出帶有兩個參數(shù)的直線的方程,聯(lián)立橢圓方程后,利用題干中的條件,解出一個參數(shù)或得到兩個參數(shù)之間的關(guān)系,即可求出定點.20、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進(jìn)行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標(biāo)準(zhǔn)方程進(jìn)行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當(dāng)P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當(dāng)P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設(shè)直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因為同號,所以,當(dāng)且僅當(dāng)時取等號,即當(dāng)時取等號,于是有以線段MN為直徑作圓C,當(dāng)圓C面積最小時,此時最小,當(dāng)時,和,中點坐標(biāo)為:,半徑為,所以圓的方程為:,同理當(dāng)時,和,中點坐標(biāo)為:,半徑為,所以圓的方程為:,綜上所述:圓C的方程為.21、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項和公比,可求得數(shù)列的通項公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項相消法可得出的表達(dá)式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當(dāng)n=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓(xùn)課程職業(yè)發(fā)展規(guī)劃
- 企業(yè)內(nèi)部培訓(xùn)考核制度
- 培訓(xùn)學(xué)校代課管理制度
- 婦女培訓(xùn)中心學(xué)習(xí)制度
- 醫(yī)院保潔培訓(xùn)管理制度
- 水電維修人員培訓(xùn)制度
- 呼吸科??婆嘤?xùn)制度
- 小主持人培訓(xùn)管理制度
- 教育培訓(xùn)預(yù)算管理制度
- 美業(yè)學(xué)員培訓(xùn)管理制度
- 廣西出版?zhèn)髅郊瘓F(tuán)有限公司2026年招聘備考題庫附答案詳解
- 陶瓷工藝品彩繪師改進(jìn)水平考核試卷含答案
- 2025廣東百萬英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎(chǔ)知識)測試題附答案
- 粉塵防護(hù)知識課件
- 2026年日歷表含農(nóng)歷(2026年12個月日歷-每月一張A4可打?。?/a>
- DB36-T 1158-2019 風(fēng)化殼離子吸附型稀土礦產(chǎn)地質(zhì)勘查規(guī)范
- 周圍神經(jīng)損傷及炎癥康復(fù)診療規(guī)范
- 青海工程建設(shè)監(jiān)理統(tǒng)一用表
- 城市道路照明路燈工程施工組織方案資料
- GA 38-2021銀行安全防范要求
- 上海市復(fù)旦附中2022年數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
評論
0/150
提交評論