四川省會理縣第一中學2026屆數(shù)學高二上期末調(diào)研模擬試題含解析_第1頁
四川省會理縣第一中學2026屆數(shù)學高二上期末調(diào)研模擬試題含解析_第2頁
四川省會理縣第一中學2026屆數(shù)學高二上期末調(diào)研模擬試題含解析_第3頁
四川省會理縣第一中學2026屆數(shù)學高二上期末調(diào)研模擬試題含解析_第4頁
四川省會理縣第一中學2026屆數(shù)學高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省會理縣第一中學2026屆數(shù)學高二上期末調(diào)研模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.2.設函數(shù)是定義在上的函數(shù)的導函數(shù),有,若,,則,,的大小關系是()A. B.C. D.3.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,4.某校高二年級統(tǒng)計了參加課外興趣小組的學生人數(shù),每人只參加一類,數(shù)據(jù)如下表:學科類別文學新聞經(jīng)濟政治人數(shù)400300100200若從參加課外興趣小組的學生中采用分層抽樣的方法抽取50名參加學習需求的問卷調(diào)查,則從文學、新聞、經(jīng)濟、政治四類興趣小組中抽取的學生人數(shù)分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,105.已知點F是雙曲線的左焦點,點E是該雙曲線的右頂點,過F作垂直于x軸的直線與雙曲線交于G、H兩點,若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.6.在正方體中,AC與BD的交點為M.設則下列向量與相等的向量是()A. B.C. D.7.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質,如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.8.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.9.已知圓與圓外切,則()A. B.C. D.10.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=111.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>012.已知,,2成等差數(shù)列,則在平面直角坐標系中,點M(x,y)的軌跡為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,則向量在向量上的投影向量的坐標是__________14.已知函數(shù)的圖象上有一點,則曲線在點處的切線方程為______.15.若球的大圓的面積為,則該球的表面積為___________.16.半徑為的球的表面積為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處取得極值(1)求實數(shù)a的值;(2)若函數(shù)在內(nèi)有零點,求實數(shù)b的取值范圍18.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標準方程;(2)設O為坐標原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.19.(12分)如圖,已知三棱錐的側棱,,兩兩垂直,且,,是的中點.(1)求異面直線與所成角的余弦值;(2)求點到面的距離.(3)求二面角的平面角的正切值.20.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點,使得二面角的余弦值?若存在,指出點的位置;若不存在,說明理由.21.(12分)已知的二項展開式中所有項的二項式系數(shù)之和為,(1)求的值;(2)求展開式的所有有理項(指數(shù)為整數(shù)),并指明是第幾項22.(10分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題設,根據(jù)圓與橢圓的對稱性,假設在第一象限可得,結合已知有,進而求橢圓的離心率.【詳解】由題設,圓與橢圓的如下圖示:又時,的取值范圍是,結合圓與橢圓的對稱性,不妨假設在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.2、C【解析】設,求導分析的單調(diào)性,又,,,即可得出答案【詳解】解:設,則,又因為,所以,所以在上單調(diào)遞增,又,,,因為,所以,所以.故選:C3、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設到的距離為,則,當?shù)拿娣e最小時,,故正確故選:4、D【解析】利用分層抽樣的等比例性質求抽取的樣本中所含各小組的人數(shù).【詳解】根據(jù)分層抽樣的等比例性質知:文學小組抽取人數(shù)為人;新聞小組抽取人數(shù)為人;經(jīng)濟小組抽取人數(shù)為人;政治小組抽取人數(shù)為人;故選:D.5、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當時,,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.6、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.7、A【解析】設出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.8、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.9、D【解析】根據(jù)兩圓外切關系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設,兩圓圓心分別為、,半徑分別為1、r,∴由外切關系知:,可得.故選:D.10、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題11、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B12、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運算以及化簡公式的應用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設誰,再根據(jù)題干將等量關系轉化為代數(shù)關系,從而列出方程,化簡即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)投影向量概念求解即可.【詳解】因為空間向量,,所以,,所以向量在向量上投影向量為:,故答案為:.14、【解析】利用導數(shù)求得為增函數(shù),根據(jù),求得,進而求得,得出即在點處的切線的斜率,再利用直線的點斜式方程,即可求解【詳解】由題意,點在曲線上,可得,又由函數(shù),則,所以函數(shù)在上為增函數(shù),且,所以,因為,所以,即在點處的切線的斜率為2,所以曲線在點的切線方程為,即.故答案為:【點睛】本題主要考查了利用導數(shù)求解曲線在某點處的切線方程,其中解答中熟記導數(shù)的幾何意義,以及導數(shù)的運算公式,結合直線的點斜式方程是解答的關鍵,著重考查了推理與運算能力15、【解析】設球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.16、.【解析】由球的表面積公式計算【詳解】由題意.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對函數(shù)求導,求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點,只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗證時,在處取得極值(2)由(1)知,∴極值點為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點,只需∴18、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當直線l的斜率存在時,設出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達定理、向量數(shù)量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標準方程為:.【小問2詳解】當直線l的斜率存在時,設直線l的方程為,由消去y并整理得:,設,則,,,,,,要使為定值,必有,解得,此時,當直線l的斜率不存在時,由對稱性不妨令,,,當時,,即當時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1);(2);(3).【解析】(1)首先以為原點,、、分別為、、軸建立空間直角坐標系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量為,先求,再求二面角的正切值.【詳解】(1)以為原點,、、分別為、、軸建立空間直角坐標系.則有、、、.,,所以異面直線與所成角的余弦為(2)設平面的法向量為,則知:;知取,又,點到面的距離所以點到面的距離為.(3)(2)中已求平面的法向量,設平面的法向量為∵;∴取..設二面角的平面角為,則.【點睛】本題考查空間直角坐標系求解空間角和點到平面的距離,重點考查計算能力,屬于中檔題型.20、(1);(2)存在,為上靠近點的三等分點【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,求出的坐標以及平面的一個法向量,計算即可求解;(2)假設線段上存在點符合題意,設可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標系,如圖所示:則,,,.不妨設平面的一個法向量,則有,即,取.設直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設線段上存在點,使得二面角的余弦值.設,則,從而,,.設平面的法向量,則有,即,取.設平面的法向量,則有,即,取.,解得:或(舍),故存在點滿足條件,為上靠近點的三等分點【點睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結果.21、(1)(2)【解析】(1)由二項式系數(shù)和公式可得答案;(2)求出的通項,利用的指數(shù)為整數(shù)可得答案.【小問1詳解】的二項展開式中所有項的二項式系數(shù)之和,所以.【小問2詳解】,因此時,有理項,有理項是第一項和第七項.22、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質,結合銳角三角函數(shù)定義進行求解即可;(2)根據(jù)題意,結合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論