版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆陜西省商洛市丹鳳縣丹鳳中學(xué)數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)a,b是兩條不同的直線,α,β是兩個不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則2.若點在函數(shù)的圖像上,則A.8 B.6C.4 D.23.函數(shù)和都是減函數(shù)的區(qū)間是A. B.C. D.4.已知函數(shù),則下列結(jié)論不正確的是()A. B.是的一個周期C.的圖象關(guān)于點對稱 D.的定義域是5.已知a,b,c,d均為實數(shù),則下列命題正確的是()A.若,,則B.若,,則C.若,則D.若,則6.17世紀(jì),在研究天文學(xué)的過程中,為了簡化大數(shù)運算,蘇格蘭數(shù)學(xué)家納皮爾發(fā)明了對數(shù),對數(shù)的思想方法即把乘方和乘法運算分別轉(zhuǎn)化為乘法和加法,數(shù)學(xué)家拉普拉斯稱贊為“對數(shù)的發(fā)明在實效上等于把天文學(xué)家的壽命延長了許多倍”.已知,,設(shè),則所在的區(qū)間為()A. B.C. D.7.已知向量,若與垂直,則的值等于A. B.C.6 D.28.已知扇形的面積為,當(dāng)扇形的周長最小時,扇形的圓心角為()A1 B.2C.4 D.89.已知函數(shù)(其中)的最小正周期為,則()A. B.C.1 D.10.函數(shù)的零點個數(shù)為(
)A.1 B.2C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若對一切實數(shù),均有,則___.12.若,則___________.13.已知函數(shù)則的值等于____________.14.設(shè)函數(shù)是定義在上的奇函數(shù),且,則___________15.計算_______.16.如圖,已知△和△有一條邊在同一條直線上,,,,在邊上有個不同的點F,G,則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的最小正周期、單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最小值和最大值.18.已知函數(shù)是定義域為R的奇函數(shù).(1)求t的值,并寫出的解析式;(2)判斷在R上的單調(diào)性,并用定義證明;(3)若函數(shù)在上的最小值為,求k的值.19.直線l1過點A(0,1),l2過點B(5,0),如果l1∥l2且l1與l2的距離為5,求l1,l2的方程.20.已知函數(shù)是定義在上的偶函數(shù),函數(shù).(1)求實數(shù)的值;(2)若時,函數(shù)的最小值為.求實數(shù)的值.21.函數(shù)的部分圖象如圖所示.(1)求、及圖中的值;(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由空間中直線、平面的位置關(guān)系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個不同的平面,知:在A中,若,,則或,故A錯誤;在B中,若,,則,故B錯誤;在C中,若,,則或,故C錯誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬中檔題2、B【解析】由已知利用對數(shù)的運算可得tanθ,再利用倍角公式及同角三角函數(shù)基本關(guān)系的運用化簡即可求值【詳解】解:∵點(8,tanθ)在函數(shù)y=的圖象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故選B【點睛】本題主要考查了對數(shù)的運算性質(zhì),倍角公式及同角三角函數(shù)基本關(guān)系的運用,屬于基礎(chǔ)題3、A【解析】y=sinx是減函數(shù)的區(qū)間是,y=cosx是減函數(shù)的區(qū)間是[2k,2k+],,∴同時成立的區(qū)間為故選A.4、C【解析】畫出函數(shù)的圖象,觀察圖象可解答.【詳解】畫出函數(shù)的圖象,易得的周期為,且是偶函數(shù),定義域是,故A,B,D正確;點不是函數(shù)的對稱中心,C錯誤.故選:C5、B【解析】利用不等式的性質(zhì)逐項判斷可得出合適的選項.【詳解】對于A選項,若,,則,故,A錯;對于B選項,若,,則,所以,,故,B對;對于C選項,若,則,則,C錯;對于D選項,若,則,所以,,D錯.故選:B.6、C【解析】利用對數(shù)的運算性質(zhì)求出,由此可得答案.【詳解】,所以.故選:C7、B【解析】,所以,則,故選B8、B【解析】先表示出扇形的面積得到圓心角與半徑的關(guān)系,再利用基本不等式求出周長的最小值,進而求出圓心角的度數(shù).【詳解】設(shè)扇形的圓心角為,半徑為,則由題意可得∴,當(dāng)且僅當(dāng)時,即時取等號,∴當(dāng)扇形的圓心角為2時,扇形的周長取得最小值32.故選:B.9、D【解析】根據(jù)正弦型函數(shù)的最小正周期求ω,從而可求的值.【詳解】由題可知,,∴.故選:D.10、B【解析】函數(shù)的定義域為,且,即函數(shù)為偶函數(shù),當(dāng)時,,設(shè),則:,據(jù)此可得:,據(jù)此有:,即函數(shù)是區(qū)間上的減函數(shù),由函數(shù)的解析式可知:,則函數(shù)在區(qū)間上有一個零點,結(jié)合函數(shù)的奇偶性可得函數(shù)在R上有2個零點.本題選擇B選項.點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標(biāo)有幾個不同的值,就有幾個不同的零點二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】列方程組解得參數(shù)a、b,得到解析式后,即可求得的值.【詳解】由對一切實數(shù),均有可知,即解之得則,滿足故故答案:12、1【解析】由已知結(jié)合兩角和的正切求解【詳解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案為1【點睛】本題考查兩角和的正切公式的應(yīng)用,是基礎(chǔ)的計算題13、18【解析】根據(jù)分段函數(shù)定義計算【詳解】故答案為:1814、【解析】先由已知條件求出的函數(shù)關(guān)系式,也就是當(dāng)時的函數(shù)關(guān)系式,再求得,然后求的值即可【詳解】解:當(dāng)時,,∴,∵函數(shù)是定義在上的奇函數(shù),∴,∴,即由題意得,∴故答案為:【點睛】此題考查了分段函數(shù)求值,考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.15、【解析】利用指數(shù)的運算法則求解即可.【詳解】原式.故答案為:.【點睛】本題主要考查了指數(shù)的運算法則.屬于容易題.16、16【解析】由題意易知:△和△為全等的等腰直角三角形,斜邊長為,,故答案為16點睛:平面向量數(shù)量積類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式a·b=|a||b|cosθ;二是坐標(biāo)公式a·b=x1x2+y1y2;三是利用數(shù)量積的幾何意義.本題就是利用幾何意義處理的.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進行化簡.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),增區(qū)間是,減區(qū)間是(2),【解析】(1)根據(jù)余弦函數(shù)的圖象與性質(zhì),求出f(x)的最小正周期和單調(diào)增、減區(qū)間;(2)求出x∈[,]時2x的取值范圍,從而求得f(x)的最大最小值【詳解】(1)函數(shù)f(x)cos(2x)中,它的最小正周期為Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的單調(diào)增區(qū)間為[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的單調(diào)減區(qū)間為[kπ,kπ],k∈Z;(2)x∈[,]時,2x≤π,所以2x;令2x,解得x,此時f(x)取得最小值為f()()=﹣1;令2x0,解得x,此時f(x)取得最大值為f()1【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,熟記單調(diào)區(qū)間是關(guān)鍵,是基礎(chǔ)題18、(1)或,;(2)R上單調(diào)遞增,證明見解析;(3)【解析】(1)是定義域為R的奇函數(shù),利用奇函數(shù)的必要條件,求出的值,進而求出,驗證是否為奇函數(shù);(2)可判斷在上為增函數(shù),用函數(shù)的單調(diào)性定義加以證明,取兩個不等的自變量,對應(yīng)函數(shù)值做差,因式分解,判斷函數(shù)值差的符號,即可證明結(jié)論;(3)由,換元令,,由(2)得,,根據(jù)條件轉(zhuǎn)化為在最小值為-2,對二次函數(shù)配方,求出對稱軸,分類討論求出最小值,即可求解【詳解】解:(1)因為是定義域為R的奇函數(shù),所以,即,解得或,可知,此時滿足,所以.(2)在R上單調(diào)遞增.證明如下:設(shè),則.因為,所以,所以,可得.因為當(dāng)時,有,所以R單調(diào)遞增.(3)由(1)可知,令,則,因為是增函數(shù),且,所以.因為在上的最小值為,所以在上的最小值為.因為,所以當(dāng)時,,解得或(舍去);當(dāng)時,,不合題意,舍去.綜上可知,.【點睛】本題考查函數(shù)的奇偶性應(yīng)用和單調(diào)性的證明,考查復(fù)合函數(shù)的最值,用換元方法,將問題化歸為二次函數(shù)函數(shù)的最值,屬于較難題.19、l1:,l2:或者l1:,l2:;【解析】由題意,分成兩種情況討論,l1與l2平行且斜率存在時,通過距離等于5列出方程求解即可;l1與l2平時且斜率不存在時,驗證兩直線間的距離等于5也成立,最后得出答案.【詳解】因為l1∥l2,當(dāng)l1,l2斜率存在時,設(shè)為,則l1,l2方程分別為:,化成一般式為:,,又l1與l2的距離為5,所以,解得:,故l1方程:l2方程:;當(dāng)l1,l2斜率不存在時,l1:,l2:,也滿足題意;綜上:l1:,l2:或者l1:,l2:;【點睛】(1)當(dāng)直線的方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x,y的系數(shù)不能同時為零這一隱含條件(2)在判斷兩直線的平行、垂直時,也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論20、(1)(2)【解析】(1)根據(jù)函數(shù)的奇偶性求得的值.(2)結(jié)合指數(shù)函數(shù)、二次函數(shù)的性質(zhì)求得.【小問1詳解】的定義域為,為偶函數(shù),所以,.【小問2詳解】由(1)得..令,結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)時,時,最小,即,解得,舍去.當(dāng)時,時,最小,即,解得(負(fù)根舍去).當(dāng)時,時,最小,即,解得,舍去.綜上所述,.21、(1),,;(2),.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026重慶一中寄宿學(xué)校融媒體中心招聘1人備考題庫及答案詳解參考
- 公共場所綠化養(yǎng)護景觀管理手冊
- 2026海南渠田水利水電勘測設(shè)計有限公司天津分公司招聘備考題庫及答案詳解(新)
- 2026年數(shù)據(jù)庫性能調(diào)優(yōu)實戰(zhàn)課程
- 起重吊裝安全督查課件
- 職業(yè)共病管理中的病理機制探討
- 職業(yè)健康科普資源整合策略
- 職業(yè)健康監(jiān)護中的標(biāo)準(zhǔn)化質(zhì)量管理體系
- 職業(yè)健康溝通策略創(chuàng)新實踐
- 職業(yè)健康歸屬感對醫(yī)療員工組織承諾的正向影響
- 品質(zhì)例會管理制度
- DG-TJ08-2235-2024 地下建筑增擴與改建技術(shù)標(biāo)準(zhǔn)
- 山東省菏澤市牡丹區(qū)2024-2025學(xué)年八年級上學(xué)期期末語文試題(含答案)
- 混凝土材料數(shù)據(jù)庫構(gòu)建-深度研究
- 養(yǎng)老院老年人能力評估表
- 《110kV三相環(huán)氧樹脂澆注絕緣干式電力變壓器技術(shù)參數(shù)和要求》
- DB53∕T 1269-2024 改性磷石膏用于礦山廢棄地生態(tài)修復(fù)回填技術(shù)規(guī)范
- 前列腺增生的護理2
- GB/T 43869-2024船舶交通管理系統(tǒng)監(jiān)視雷達通用技術(shù)要求
- 福彩刮刮樂培訓(xùn)課件
- QB∕T 3826-1999 輕工產(chǎn)品金屬鍍層和化學(xué)處理層的耐腐蝕試驗方法 中性鹽霧試驗(NSS)法
評論
0/150
提交評論